Law of Refraction Explained

$0.00

The diagram deals with the Law of Refraction (Snell’s law) and explains how to use the equation to predict what will happen to the direction in which light travels when it crosses the boundary between two transparent media.


The law defines the relationship between the angle of incidence and angle of refraction of a ray of light with reference to the refractive indices of both media. It can be stated as follows:

When electromagnetic radiation (light) of a specific wavelength crosses the interface of any given pair of media, the ratio of the sines of the angles of incidence and the sines of the angles of refraction is a constant in every case.

Description

Law of Refraction Explained

TRY SOME QUICK QUESTIONS AND ANSWERS TO GET STARTED
As light travels from a fast medium such as air to a slow medium such as water it bends toward 'the normal' and slows down. As light passes from a slow medium such as diamond to a faster medium such as glass it bends away from 'the normal' and speeds up.
When light crosses a boundary into a medium with a high refractive index (eg. diamond = 2.42) there is a significant change in direction and speed. When light crosses a boundary into a medium with a low refractive index (eg. water = 1.333) there is a less significant change in direction or speed.
Yes! As light crosses the boundary from a faster medium such as air to a slower medium such as glass or water it bends towards the normal.
Yes! When light leaves a vacuum or travels from one transparent medium into another, it undergoes refraction causing it to change both direction and speed.

About the diagram

Overview of this page

  • This page explains how to use the law of refraction (also called Snell’s law).
  • Related terms, including reflection, refraction and chromatic dispersion are covered on earlier pages of this series.
  • An introduction to term refractive index and how the refractive index of a transparent medium is used also appears in the series.

An overview of refraction

  • Refraction refers to the way that light (electromagnetic radiation) changes speed and direction as it travels from one transparent medium into another.
  • Refraction takes place as light travels across the boundary between different transparent media and is a result of their different optical properties.
  • Refraction is the result of the differences in the optical density of transparent media. Gases have a very low optical density whilst diamonds have a high optical density.
  • When light is refracted its path bends and so changes direction.
  • The effect of refraction on the path of a ray of light is measured by the difference between the angle of incidence and the angle of reflection.
  • As light travels across the interface between different media it changes speed.
  • Depending on the media through which light is refracted, its speed can either increase or decrease.

An overview of refraction and wavelength

  • Every wavelength of light is affected to a different degree when it encounters a medium and undergoes refraction.
  • Every wavelength of light changes both speed and direction by a different amount when it encounters a new medium and undergoes refraction.
  • The change in angle for any wavelength of light undergoing refraction within a specific transparent medium can be predicted if the refractive index of the medium is known.
  • The refractive index for a medium is calculated by finding the difference between the speed of light in a vacuum and its speed as it travels through the medium.
Colour wavelength (nm) Refractive index
Red 640 1.50917
Yellow 589 1.51124
Green 509 1.51534
Blue 486 1.51690
Violet 434 1.52136

The refractive index for crown glass is often given as being 1.52. This table shows how that figure alters with wavelength

The diagram

This diagram deals with the Law of Refraction (Snell’s law) and explains how to use the equation to predict what will happen to the direction in which light travels when it crosses the boundary between two transparent media. The law defines the relationship between the angle of incidence and angle of refraction of a ray of light with reference to the refractive indices of both media. It can be stated as follows:

When electromagnetic radiation (light) of a specific wavelength crosses the interface of any given pair of media, the ratio of the sines of the angles of incidence and the sines of the angles of refraction is a constant in every case.

  • Snell’s law deals with the fact that for an incident ray of light approaching the boundary of two media, the sine of the angle of incidence multiplied by the index of refraction of the first medium is equal to the sine of the angle of refraction multiplied by the index of refraction of the second medium.
  • Snell’s law deals with the fact that the sine of the angle of incidence to the sine of the angle of refraction is constant when a light ray passes across the boundary from one medium to another.
  • Snell’s law can be used to calculate the angle of incidence or refraction associated with the use of lenses, prisms and other everyday materials.
  • When using Snell’s law, the angles of incidence and refraction are measured between the path of a ray of light and the normal.
  • The normal is an imaginary line drawn on a ray diagram perpendicular to, so at a right angle to (900), to the boundary between two media.
  • The speed of light in a vacuum expressed in metres per second = 299,792,458 m/sec. So = 299,792 km/sec.

Some key terms

The angle of incidence refers to the angle at which incoming light strikes a surface and is measured between a ray of incoming light and an imaginary line called the normal.

The speed (or velocity) of a light wave is a measurement of how far it travels in a certain time.

  • The speed of light is measured in metres per second (m/s).
  • Light travels through a vacuum at 300,000 kilometres per second.
  • The exact speed at which light travels through a vacuum is 299,792,458 metres per second.
  • Light travels through other media at lower speeds.
  • A vacuum is a region of space that contains no matter.
  • Matter is anything that has mass and occupies space by having volume.
  • When discussing electromagnetic radiation the term medium (plural media) is used to refer to anything through which light propagates including empty space and any material that occupies space such as a solid, liquid or gas.
  • In other contexts empty space is not considered to be a medium because it does not contain matter.

The angle of refraction measures the angle to which light bends as it crosses the boundary between different media.

  • The angle of refraction is measured between the bent ray and an imaginary line called the normal.
  • In optics, the normal is a line drawn on a ray diagram perpendicular to, so at a right angle to (900), the boundary between two media.
  • Snell’s law is a formula used to describe the relationship between the angle of incidence and the angle of refraction when light crosses the boundary between transparent media, such as water and air or water and glass.

The angle of incidence measures the angle at which incoming light strikes a surface.

  • When light is travelling towards something it is said to be incident to that surface or object.
  • The angle of incidence is measured between a ray of incoming light and an imaginary line called the normal.
  • In optics, the normal is a line drawn on a ray diagram perpendicular to, so at a right angle to (900), the boundary between two media.
  • Incident light may have travelled from the Sun or a man-made source or may have already been reflected off another surface such as a mirror.
  • When incident light strikes a surface or object it may undergo absorption, reflection, refraction, transmission or any combination of these optical effects.

The angle of incidence measures the angle at which incoming light strikes a surface.

  • The angle of incidence is measured between a ray of incoming light and an imaginary line called the normal.
  • In optics, the normal is a line drawn on a ray diagram perpendicular to, so at a right angle to (900), the boundary between two media.
  • If the boundary between the media is curved, then the normal is drawn at a tangent to the boundary.

Diagrams are free to download

Downloads: Slides or Illustrations


DOWNLOAD DIAGRAMS
  • SLIDES are optimized for viewing on-screen.
  • ILLUSTRATIONS are optimized for printing on A4 pages in portrait format.
SLIDES
  • Slides are available in JPG and AI (Adobe Illustrator) file formats.
  • Titles: Slides have titles.
  • Backgrounds: Black.
  • Size: 1686 x 1124 pixels (3:2 aspect ratio).
ILLUSTRATIONS
  • Illustrations are available in JPG and AI two file formats.
  • Titles: No titles.
  • Backgrounds: White.
  • Size: 1686 x 1124 (3:2 aspect ratio). So all illustrations reproduce at the same scale when inserted into Word documents etc.
  • Labels: Calibri 24pt Italic.

File formats: JPG & AI


DOWNLOAD THE DIAGRAM ON THIS PAGE AS A JPG FILE
  • JPG (JPEG) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
  • If a JPG diagram doesn’t fit your needs, you can download it as an AI (Adobe Illustrator) file and edit it yourself.
  • JPG files can be placed or pasted directly into MS Office documents.
DOWNLOAD THE DIAGRAM ON THIS PAGE AS AN AI file
  • All AI (Adobe Illustrator) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
  • All our diagrams are created in Adobe Illustrator as vector drawings.
  • Save as or export AI files to other formats including PDF (.pdf), PNG (.png), JPG (.jpeg) and SVG(.svg) etc.

Spelling: UK & US


We use English (UK) spelling by default here at lightcolourvision.org.

COPY & PASTING TEXT
  • After copy/pasting text please do a spell-check to change our spelling to match your own document.
DOWNLOAD DIAGRAMS
  • Download AI versions of diagrams to change the spelling or language used for titles, labels etc.
  • We are adding American English (US) versions of diagrams on request. Just contact us and let us know what you need.
  • When downloading JPG versions of diagrams, look out for JPG (UK) or JPG (US) in the download dialogue box.

Download agreement


DOWNLOAD AGREEMENT

Light, Colour, Vision & How To See More (https://lightcolourvision.org) : Copyright © 2015-2022 : MediaStudies Trust.

Unless stated otherwise the author of all images and written content on lightcolourvision.org is Ric Mann.

ALL RIGHTS RESERVED

No part of this website may be copied, displayed, extracted, reproduced, utilised, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical or otherwise including but not limited to photocopying, recording, or scanning without the prior written permission of MediaStudies Trust.

EXCEPTIONS

Exceptions to the above statement are made for personal, educational and non-profit purposes:

Before downloading, cutting and pasting or reproducing any information, images or other assets found on lightcolourvision.org we ask you to agree to the following terms:

  1. All information, images and other assets displayed and made available for download on the lightcolourvision.org website are copyright. This means there are limitations on how they can be used.
  2. All information, images and other assets displayed or made available for download are solely and exclusively to be used for personal, educational and non-profit purposes.
  3. When you find the resources you need, then part of the download process involves you (the user) ticking a box to let us (at lightcolourvision.org) know we both agree on how the material can be used.
  4. Please contact [email protected] before considering any use not covered by the terms of the agreement above.

The copyright to all information, images and all other assets (unless otherwise stated) belongs to:

The Trustees. MediaStudies Trust
111 Lynbrooke Avenue
Blockhouse Bay
Auckland 0600
New Zealand
[email protected]

We love feedback

Your name and email address will be used solely to provide you with information you have specifically requested. See our privacy policy at https://lightcolourvision.org/privacy/.


We welcome your feedback 🙂









    Note: The feedback form records the URL of the current page


    Thank you so much for your time and effort