Chromatic Dispersion of R G & B Rays


The diagram shows an incident ray of white light composed of wavelengths corresponding with red, green and blue wavelengths approaching the boundary between air and glass.


Chromatic Dispersion of R, G & B Rays

Yes! When light leaves a vacuum or travels from one transparent medium into another, it undergoes refraction causing it to change both direction and speed.
Yes! As light crosses the boundary from a faster medium to a slower medium it bends towards the normal.
The normal is an imaginary line drawn on a ray-tracing diagram perpendicular to, so at a right angle (90 degrees), to the boundary between two media.
The wavelength of incident light decreases as it travels from air into glass or water because they are both optically rare media.

About the diagram

Overview of this page

An overview of refraction

  • Refraction refers to the way that light (electromagnetic radiation) changes speed and direction as it travels from one transparent medium into another.
  • Refraction takes place as light travels across the boundary between different transparent media and is a result of their different optical properties.
  • Refraction is the result of the differences in the optical density of transparent media. Gases have a very low optical density whilst diamonds have a high optical density.
  • When light is refracted its path bends and so changes direction.
  • The effect of refraction on the path of a ray of light is measured by the difference between the angle of incidence and the angle of reflection.
  • As light travels across the interface between different media it changes speed.
  • Depending on the media through which light is refracted, its speed can either increase or decrease.

An overview of chromatic dispersion

  • The term chromatic dispersion (often simply called dispersion) refers to the way that different wavelengths of light separate at the boundary between transparent media during the process of refraction.
  • Dispersion causes the separate wavelengths present in a ray of light to fan out so that their corresponding colours become visible to an observer.
  • When white light is dispersed, the spread of colours has red on one side and violet at the other.
  • The colours produced by dispersion are spectral colours – ROYGBV.
  • Dispersion occurs because refraction causes every wavelength of light to alter speed, and at the same time, to bend and change direction by a different amount.
  • For dispersion to occur the incident light approaching the boundary between two different transparent media must contain a sufficiently wide range of wavelengths to enable them to separate out so that their associated colours are visible to an observer.

An overview of refraction and wavelength

  • Every wavelength of light is affected to a different degree when it encounters a medium and undergoes refraction.
  • Every wavelength of light changes both speed and direction by a different amount when it encounters a medium and undergoes refraction.
  • The change in angle for any wavelength of light undergoing refraction within a specific transparent medium can be predicted if the refractive index of the medium is known.
  • The refractive index for a medium is calculated by finding the difference between the speed of light in a vacuum and its speed as it travels through the medium.
  • To understand dispersion we must recognise that the refractive index of a transparent medium must be corrected for different wavelengths of the visible spectrum.

The diagram

The diagram shows an incident ray of light composed of wavelengths corresponding with red, green and blue approaching the boundary between air and glass.

  • As the ray crosses the boundary into the glass it bends towards the normal (the dotted green line).
  • Refraction is towards the normal because the ray travels from air, the faster, less optically dense medium with a smaller refractive index into the glass, a slower, more optically dense medium with a higher refractive index.
  • Refraction results in the dispersion of the wavelengths present in the incident ray.
  • The table shows the wavelengths and refractive indices for red, green and blue when refracted by crown glass.

The effect shown in the diagram is similar to when white light strikes a prism and a rainbow of colours become visible to an observer.


  • All transparent media cause incident light to change direction and to disperse into their component colours.
  • When light is refracted and changes direction, the angle is determined by the refractive index of the medium it enters.
  • Refractive index (n) is equal to the speed of light in a vacuum (c) divided by the speed of light in the medium (v)
  • Light travels at 299.792 kilometres per second in a vacuum.
  • Only a narrow range of wavelengths that form the full electromagnetic spectrum are visible to the human eye.
  • The wavelengths that we can see are known as the visible spectrum.
  • The presence of different wavelengths of light around us results in the colours we see in the world around us.

For an explanation of the refractive index (index of refraction) of a medium see: Refractive Index Explained.

For an explanation of how to use the refractive index of a medium see: How to Use the Refractive Index of a Medium.

For an explanation of the Law of Refraction see: Snell’s Law of Refraction Explained.

Some key terms

Any material through which an electromagnetic wave propagates (travels) is called a medium (plural media).


About sections (temp)

Dispersion (or chromatic dispersion) refers to the way that light, under certain conditions, separates into its component wavelengths and the colours corresponding with each wavelength become visible to a human observer.

Wavelength is a measurement from any point on the path of a wave to the same point on its next oscillation. The measurement is made parallel to the centre-line of the wave.

  • The wavelength of an electromagnetic wave is measured in metres.
  • Each type of electromagnetic radiation, such as radio waves, visible light and gamma waves,  forms a band of wavelengths on the electromagnetic spectrum.
  • The visible part of the electromagnetic spectrum is composed of the range of wavelengths that correspond with all the different colours we see in the world.
  • Human beings don’t see wavelengths of visible light, but they do see the spectral colours that correspond with each wavelength and the other colours produced when different wavelengths are combined.
  • The wavelength of visible light is measured in nanometres. There are 1,000,000,000 nanometres to a metre.

In physics and optics, a wave diagram uses a set of drawing conventions and labels to describe the attributes of light waves including wavelength, frequency, amplitude and direction of travel.

Diagrams are free to download

Downloads: Slides or Illustrations

  • SLIDES are optimized for viewing on-screen.
  • ILLUSTRATIONS are optimized for printing on A4 pages in portrait format.
  • Slides are available in JPG and AI (Adobe Illustrator) file formats.
  • Titles: Slides have titles.
  • Backgrounds: Black.
  • Size: 1686 x 1124 pixels (3:2 aspect ratio).
  • Illustrations are available in JPG and AI two file formats.
  • Titles: No titles.
  • Backgrounds: White.
  • Size: 1686 x 1124 (3:2 aspect ratio). So all illustrations reproduce at the same scale when inserted into Word documents etc.
  • Labels: Calibri 24pt Italic.

File formats: JPG & AI

  • JPG (JPEG) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
  • If a JPG diagram doesn’t fit your needs, you can download it as an AI (Adobe Illustrator) file and edit it yourself.
  • JPG files can be placed or pasted directly into MS Office documents.
  • All AI (Adobe Illustrator) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
  • All our diagrams are created in Adobe Illustrator as vector drawings.
  • Save as or export AI files to other formats including PDF (.pdf), PNG (.png), JPG (.jpeg) and SVG(.svg) etc.

Spelling: UK & US

We use English (UK) spelling by default here at

  • After copy/pasting text please do a spell-check to change our spelling to match your own document.
  • Download AI versions of diagrams to change the spelling or language used for titles, labels etc.
  • We are adding American English (US) versions of diagrams on request. Just contact us and let us know what you need.
  • When downloading JPG versions of diagrams, look out for JPG (UK) or JPG (US) in the download dialogue box.

Download agreement


Light, Colour, Vision & How To See More ( : Copyright © 2015-2022 : MediaStudies Trust.

Unless stated otherwise the author of all images and written content on is Ric Mann.


No part of this website may be copied, displayed, extracted, reproduced, utilised, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical or otherwise including but not limited to photocopying, recording, or scanning without the prior written permission of MediaStudies Trust.


Exceptions to the above statement are made for personal, educational and non-profit purposes:

Before downloading, cutting and pasting or reproducing any information, images or other assets found on we ask you to agree to the following terms:

  1. All information, images and other assets displayed and made available for download on the website are copyright. This means there are limitations on how they can be used.
  2. All information, images and other assets displayed or made available for download are solely and exclusively to be used for personal, educational and non-profit purposes.
  3. When you find the resources you need, then part of the download process involves you (the user) ticking a box to let us (at know we both agree on how the material can be used.
  4. Please contact [email protected] before considering any use not covered by the terms of the agreement above.

The copyright to all information, images and all other assets (unless otherwise stated) belongs to:

The Trustees. MediaStudies Trust
111 Lynbrooke Avenue
Blockhouse Bay
Auckland 0600
New Zealand
[email protected]

We love feedback

Your name and email address will be used solely to provide you with information you have specifically requested. See our privacy policy at

We welcome your feedback 🙂

    Note: The feedback form records the URL of the current page

    Thank you so much for your time and effort