Electromagnetic Spectrum

$0.00

This diagram shows that the electromagnetic spectrum includes waves with all possible wavelengths, ranging from low energy radio waves through visible light to high energy gamma rays.

  • Notice that a wave with a longer wavelength has a lower frequency and carries less energy.
  • Notice that a wave with a shorter wavelength has a higher frequency and carries more energy.

Remember that:

  • The electromagnetic spectrum includes, in order of increasing frequency and decreasing wavelength: radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.
  • There are no precisely defined boundaries between the bands of electromagnetic radiation in the electromagnetic spectrum. Each band is associated with different properties and applications – think of radios, microwaves, x-ray machines etc.
  • Visible light is only a very small part of the electromagnetic spectrum.
  • Energy (electromagnetic energy) is the radiant energy (light) transported by electromagnetic waves.

Description

Electromagnetic spectrum

TRY SOME QUICK QUESTIONS AND ANSWERS TO GET STARTED
Blue and violet are two of the colours in the visible spectrum with the shortest wavelengths.
The frequency of incident light is unchanged as it travels from air into water and undergoes refraction.
Lower frequency = Longer wavelengths.

About the diagram

About the diagram
  • This diagram shows that the electromagnetic spectrum includes waves with all possible wavelengths, ranging from low energy radio waves through visible light to high energy gamma rays.
  • Notice that a wave with a longer wavelength has a lower frequency and carries less energy.
  • Notice that a wave with a shorter wavelength has a higher frequency and carries more energy.
Remember that:
  • The electromagnetic spectrum includes, in order of increasing frequency and decreasing wavelength: radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.
  • There are no precisely defined boundaries between the bands of electromagnetic radiation in the electromagnetic spectrum. Each band is associated with different properties and applications – think of radios, microwaves, x-ray machines etc.
  • Visible light is only a very small part of the electromagnetic spectrum.
  • Energy (electromagnetic energy) is the radiant energy (light) transported by electromagnetic waves.
  • The term light can be used in three different ways:
    • Light can be used to mean the whole of the electromagnetic spectrum from radio waves, through visible light to gamma rays. A better term is radiant energy or photon energy.
    • Light can be used to mean the range of wavelengths and frequencies that can be detected by the human eye. A better term is visible light which refers to the wavelengths that correspond with the colours between red and violet, the visible spectrum.
    • Light can be used to mean the range of wavelengths and frequencies between infra-red and ultra-violet. This usage is useful because the outer limits of the visible spectrum change under different lighting conditions and for different individuals.
  • Referring to visible light simply as light is short-hand.
  • Visible light is not the same for all living things.

Some key terms

A nanometre (nm) is a unit of length in the metric system, equal to one billionth of a metre (1 nm = 1 × 10⁻⁹ metres). It is commonly used to measure extremely small distances, particularly at the atomic and molecular scale.

  • In the context of light and electromagnetic radiation, a nanometre is often used to describe wavelengths of visible light.
    The wavelength of visible light ranges from about 700 nm (red) to 400 nm (violet).
  • Nanometres are also used to measure components like the thickness of materials, the size of particles in nanotechnology, and the spacing between atoms in a crystal lattice.

An electronvolt (eV) is a unit of energy commonly used in atomic, nuclear, and particle physics to measure the energy carried by individual particles and electromagnetic radiation. It’s a convenient unit because the energies involved in these fields are much smaller than those we encounter in everyday life.

  • Electronvolts can be used to measure the energy of elementary particles, including photons, which are the smallest units of electromagnetic radiation (quanta of the electromagnetic field).
    • One electronvolt is equal to the energy gained by a single electron when it is accelerated across a potential difference of 1 volt.
    • Photons (quanta of light) travelling through this same potential difference would also gain 1 eV of energy.
  • The electronvolt is not part of the SI unit system. The SI unit for energy is the joule (J). However, joules are too large for many particle-level interactions.
  • 1 electronvolt (eV) is equivalent to approximately 1.602 x 10^-19 joules (J).

The frequency of electromagnetic radiation (light) refers to the number of wave-cycles of an electromagnetic wave that pass a given point in a given amount of time.

  • Frequency is measured in Hertz (Hz) and signifies the number of wave-cycles per second. Sub-units of Hertz enable measurements involving a higher count of wave-cycles within a single second.
  • The frequency of electromagnetic radiation spans a broad range, from radio waves with low frequencies to gamma rays with high frequencies.
  • The wavelength and frequency of light are closely linked. Specifically, as the wavelength becomes shorter, the frequency increases correspondingly.
  • It is important not to confuse the frequency of a wave with the speed at which the wave travels or the distance it covers.
  • The energy carried by a light wave intensifies as its oscillations increase in number and its wavelength shortens.

Energy is a property of matter and fields, which can be transferred between systems or transformed into different forms but cannot be created or destroyed.

  • Everything contains energy including all forms of matter and so all objects.
  • Energy is evident in all forms of movement, interactions between, and changes to the forms and properties of matter.
  • At an atomic level, energy is evident in the movement of electrons around the nucleus of an atom. Energy is stored in the nucleus of atoms as a result of the forces that bind protons and neutrons together.
  • Energy can be transferred between objects, and converted from one form to another, but cannot be created or destroyed.
  • Everything in the universe uses energy in one form or another.
  • When it comes down to it, matter is energy.
  • Light has energy but no mass so does not occupy space and has no volume.
  • Energy is often described as either being potential energy or kinetic energy.
  • Energy is measured in joules.

 

Wavelength is the distance from any point on a wave to the corresponding point on the next wave. This measurement is taken along the middle line of the wave.

  • While wavelength can be measured from any point on a wave, it is often simplest to measure from the peak of one wave to the peak of the next, or from the bottom of one trough to the bottom of the next, ensuring the measurement covers a whole wave cycle.
  • The wavelength of an electromagnetic wave is usually given in metres.
  • The wavelength of visible light is typically measured in nanometres, with 1,000,000,000 nanometres making up a metre.
  • Each type of electromagnetic radiation – such as radio waves, visible light, and gamma waves – corresponds to a specific range of wavelengths on the electromagnetic spectrum.

The hertz (symbol: Hz) is a unit used to measure the frequency of electromagnetic waves. It represents the number of wave-cycles per second.

  • One hertz is defined as one cycle per second.
  • Hertz measure the number of oscillations of the perpendicular electric and magnetic fields in electromagnetic radiation per second.
  • Frequency conversions:
  • 1 Hertz (Hz) = 1 cycle per second
  • 1 Kilohertz (kHz) = 1,000 (thousand) cycles per second
  • 1 Megahertz (MHz) = 1,000,000 (million) cycles per second
  • 1 Gigahertz (GHz) = 1,000,000,000 (billion) cycles per second
  • 1 Terahertz (THz) = 1,000,000,000,000 (trillion )cycles per second

Diagrams are free to download

Downloads: Slides or Illustrations


DOWNLOAD DIAGRAMS
  • SLIDES are optimized for viewing on-screen.
  • ILLUSTRATIONS are optimized for printing on A4 pages in portrait format.
SLIDES
  • Slides are available in JPG and AI (Adobe Illustrator) file formats.
  • Titles: Slides have titles.
  • Backgrounds: Black.
  • Size: 1686 x 1124 pixels (3:2 aspect ratio).
ILLUSTRATIONS
  • Illustrations are available in JPG and AI two file formats.
  • Titles: No titles.
  • Backgrounds: White.
  • Size: 1686 x 1124 (3:2 aspect ratio). So all illustrations reproduce at the same scale when inserted into Word documents etc.
  • Labels: Calibri 24pt Italic.

File formats: JPG & AI


DOWNLOAD THE DIAGRAM ON THIS PAGE AS A JPG FILE
  • JPG (JPEG) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
  • If a JPG diagram doesn’t fit your needs, you can download it as an AI (Adobe Illustrator) file and edit it yourself.
  • JPG files can be placed or pasted directly into MS Office documents.
DOWNLOAD THE DIAGRAM ON THIS PAGE AS AN AI file
  • All AI (Adobe Illustrator) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
  • All our diagrams are created in Adobe Illustrator as vector drawings.
  • Save as or export AI files to other formats including PDF (.pdf), PNG (.png), JPG (.jpeg) and SVG(.svg) etc.

Spelling: UK & US


We use English (UK) spelling by default here at lightcolourvision.org.

COPY & PASTING TEXT
  • After copy/pasting text please do a spell-check to change our spelling to match your own document.
DOWNLOAD DIAGRAMS
  • Download AI versions of diagrams to change the spelling or language used for titles, labels etc.
  • We are adding American English (US) versions of diagrams on request. Just contact us and let us know what you need.
  • When downloading JPG versions of diagrams, look out for JPG (UK) or JPG (US) in the download dialogue box.

Download agreement


DOWNLOAD AGREEMENT

Light, Colour, Vision & How To See More (https://lightcolourvision.org) : Copyright © 2015-2022 : MediaStudies Trust.

Unless stated otherwise the author of all images and written content on lightcolourvision.org is Ric Mann.

ALL RIGHTS RESERVED

No part of this website may be copied, displayed, extracted, reproduced, utilised, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical or otherwise including but not limited to photocopying, recording, or scanning without the prior written permission of MediaStudies Trust.

EXCEPTIONS

Exceptions to the above statement are made for personal, educational and non-profit purposes:

Before downloading, cutting and pasting or reproducing any information, images or other assets found on lightcolourvision.org we ask you to agree to the following terms:

  1. All information, images and other assets displayed and made available for download on the lightcolourvision.org website are copyright. This means there are limitations on how they can be used.
  2. All information, images and other assets displayed or made available for download are solely and exclusively to be used for personal, educational and non-profit purposes.
  3. When you find the resources you need, then part of the download process involves you (the user) ticking a box to let us (at lightcolourvision.org) know we both agree on how the material can be used.
  4. Please contact [email protected] before considering any use not covered by the terms of the agreement above.

The copyright to all information, images and all other assets (unless otherwise stated) belongs to:

The Trustees. MediaStudies Trust
111 Lynbrooke Avenue
Blockhouse Bay
Auckland 0600
New Zealand
[email protected]

We love feedback

Your name and email address will be used solely to provide you with information you have specifically requested. See our privacy policy at https://lightcolourvision.org/privacy/.


We welcome your feedback 🙂









    Note: The feedback form records the URL of the current page


    Thank you so much for your time and effort