Wavelengths Between Red & Violet

$0.00

This diagram is about which wavelengths of electromagnetic radiation correspond with the different colours we see in the world.


It shows that whilst the visible spectrum often appears to an observer to be made up of six bands of colour, every wavelength between 700 and 380 nanometres corresponds with a different colour.

The scale along the bottom of the diagram is marked in nanometres with the corresponding colours shown above.

Remember that:

  • Objects appear to be different colours to an observer depending on the wavelengths they reflect.
  • The name given to light that contains all wavelengths of the visible spectrum is white light.
  • When all wavelengths contained in white light reflect off a neutral coloured surface then the object appears white to an observer.
  • When one or several bands of wavelengths reflect off a neutral coloured surface then the object appears coloured to an observer.
  • The colour an observer sees depends on the wavelengths of visible light emitted by a light source and on which of those wavelengths are reflected off an object.
  • Although a human observer can distinguish between many thousands of wavelengths of light in the visible spectrum our brains often produce the impression of bands of colour.

Description

Wavelengths Between Red & Violet

TRY SOME QUICK QUESTIONS AND ANSWERS TO GET STARTED
Yes! The visible spectrum is composed of wavelengths between 390 to 700 nanometers and each wavelength is associated with a different colour.
Wavelengths visible to the eye are in a band between approximately 390 to 700 nanometres.
The unit used to measure wavelength is the metre. Because the size of electromagnetic waves varies, different prefixes are used to aid measurement. Here are six examples: kilometre, centimetre, millimetre, micrometre, nanometre and picometre.
The visible spectrum is associated with the colours red, orange, yellow, green, blue and violet.
The unit of measurement for wavelengths of visible light is the nanometre (nm).

About the diagram

About the diagram
  • This diagram is about which wavelengths of electromagnetic radiation correspond with the different colours we see in the world.
  • It shows that whilst the visible spectrum often appears to an observer to be made up of six bands of colour, every wavelength between 700 and 380 nanometres corresponds with a different colour.
  • The scale along the bottom of the diagram is marked in nanometres with the corresponding colours shown above.
Remember that:
  • Objects appear to be different colours to an observer depending on the wavelengths they reflect.
  • The name given to light that contains all wavelengths of the visible spectrum is white light.
  • When all wavelengths contained in white light reflect off a neutral coloured surface then the object appears white to an observer.
  • When one or several bands of wavelengths reflect off a neutral coloured surface then the object appears coloured to an observer.
  • The colour an observer sees depends on the wavelengths of visible light emitted by a light source and on which of those wavelengths are reflected off an object.
  • Although a human observer can distinguish between many thousands of wavelengths of light in the visible spectrum our brains often produce the impression of bands of colour.

Some key terms

White light is the term for visible light that contains all wavelengths of the visible spectrum at equal intensities.

  • The sun emits white light because sunlight contains all the wavelengths of the visible spectrum in roughly equal proportions.
  • Light travelling through a vacuum or a medium is termed white light if it includes all wavelengths of visible light.
  • Light travelling through a vacuum or air is not visible to our eyes unless it interacts with something.
  • The term white light can have two meanings:
    • It can refer to a combination of all wavelengths of visible light travelling through space, regardless of observation.
    • What a person sees when all colours of the visible spectrum hit a white or neutral-coloured surface.

Visible light is the range of wavelengths of electromagnetic radiation perceived as colour by human observers.

  • Visible light is a form of electromagnetic radiation.
  • Other forms of electromagnetic radiation include radio waves, microwaves, infrared, ultraviolet, X-rays, and gamma rays.
  • Visible light is perceived by a human observer as all the spectral colours between red and violet plus all other colours that result from combining wavelengths together in different proportions.
  • A spectral colour is produced by a single wavelength of light.
  • The complete range of colours that can be perceived by a human observer is called the visible spectrum.
  • The range of wavelengths that produce visible light is a very small part of the electromagnetic spectrum.

A rainbow is an optical effect produced by illuminated droplets of water. Rainbows are caused by reflection, refraction (bending) and dispersion (spreading out) of light in individual droplets and result in the appearance of an arc of spectral colours.

  • Atmospheric rainbows only appear when weather conditions are ideal and an observer is in the right place at the right time.
  • Waterfalls, lawn sprinklers and other things that produce air-borne water droplets can produce a rainbow.
  • An atmospheric rainbow is formed from countless individual droplets each of which reflects and refracts a tiny coloured image of the Sun towards the observer.
  • As white light passes through water droplets, refraction causes the light to disperse and separate into the different colours seen by an observer.
  • If the sun is behind an observer then the rainbow will appear in front of them.
  • When a rainbow is produced by sunlight, the angles between the sun, each droplet and the observer determine which ones will form part of the rainbow, the colour each droplet will produce and the sequence in which they appear.

Wavelength is the distance from any point on a wave to the corresponding point on the next wave. This measurement is taken along the middle line of the wave.

  • While wavelength can be measured from any point on a wave, it is often simplest to measure from the peak of one wave to the peak of the next, or from the bottom of one trough to the bottom of the next, ensuring the measurement covers a whole wave cycle.
  • The wavelength of an electromagnetic wave is usually given in metres.
  • The wavelength of visible light is typically measured in nanometres, with 1,000,000,000 nanometres making up a metre.
  • Each type of electromagnetic radiation – such as radio waves, visible light, and gamma waves – corresponds to a specific range of wavelengths on the electromagnetic spectrum.

ROYGBV are the initials for the sequence of colours that make up the visible spectrum: red, orange, yellow, green, blue, and violet.

  • The visible spectrum refers to the range of colours visible to the human eye.
  • White light, when passed through a prism, separates into a sequence of individual colours corresponding with ROYGBV which is the range of colours visible to the human eye.
  • White light separates into ROYGBV because different wavelengths of light bend at slightly different angles as they enter and exit the prism.
  • ROYGBV helps us remember the order of these spectral colours starting from the longest wavelength (red) to the shortest (violet).
  • A rainbow spans the continuous range of spectral colours that make up the visible spectrum.
  • The visible spectrum is the small band of wavelengths within the electromagnetic spectrum that corresponds with all the different colours we see in the world.
  • The fact that we see the distinct bands of colour in a rainbow is an artefact of human colour vision.

Visible light refers to the range of wavelengths of electromagnetic radiation that is perceived as colour by human observers. While the range of visible light is generally considered to be 400-700 nm, the exact range of colours perceptible can vary slightly between individuals.

  • Visible light is one form of electromagnetic radiation. Other forms of electromagnetic radiation include radio waves, microwaves, infrared, ultraviolet, X-rays, and gamma rays. Visible light ranges from approximately 400 nanometres (nm) for violet to 700 nm for red.
  • A human observer perceives visible light as a combination of all the spectral colours between red and violet, as well as a vast range of other colours produced from the blending of different wavelengths in varying proportions.

The electromagnetic spectrum includes electromagnetic waves with all possible wavelengths of electromagnetic radiation, ranging from low-energy radio waves through visible light to high-energy gamma rays.

  • There are no precisely defined boundaries between the bands of electromagnetic radiation in the electromagnetic spectrum.
  • The electromagnetic spectrum includes, in order of increasing frequency and decreasing wavelength: radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.
  • Visible light is only a very small part of the electromagnetic spectrum.

Diagrams are free to download

Downloads: Slides or Illustrations


DOWNLOAD DIAGRAMS
  • SLIDES are optimized for viewing on-screen.
  • ILLUSTRATIONS are optimized for printing on A4 pages in portrait format.
SLIDES
  • Slides are available in JPG and AI (Adobe Illustrator) file formats.
  • Titles: Slides have titles.
  • Backgrounds: Black.
  • Size: 1686 x 1124 pixels (3:2 aspect ratio).
ILLUSTRATIONS
  • Illustrations are available in JPG and AI two file formats.
  • Titles: No titles.
  • Backgrounds: White.
  • Size: 1686 x 1124 (3:2 aspect ratio). So all illustrations reproduce at the same scale when inserted into Word documents etc.
  • Labels: Calibri 24pt Italic.

File formats: JPG & AI


DOWNLOAD THE DIAGRAM ON THIS PAGE AS A JPG FILE
  • JPG (JPEG) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
  • If a JPG diagram doesn’t fit your needs, you can download it as an AI (Adobe Illustrator) file and edit it yourself.
  • JPG files can be placed or pasted directly into MS Office documents.
DOWNLOAD THE DIAGRAM ON THIS PAGE AS AN AI file
  • All AI (Adobe Illustrator) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
  • All our diagrams are created in Adobe Illustrator as vector drawings.
  • Save as or export AI files to other formats including PDF (.pdf), PNG (.png), JPG (.jpeg) and SVG(.svg) etc.

Spelling: UK & US


We use English (UK) spelling by default here at lightcolourvision.org.

COPY & PASTING TEXT
  • After copy/pasting text please do a spell-check to change our spelling to match your own document.
DOWNLOAD DIAGRAMS
  • Download AI versions of diagrams to change the spelling or language used for titles, labels etc.
  • We are adding American English (US) versions of diagrams on request. Just contact us and let us know what you need.
  • When downloading JPG versions of diagrams, look out for JPG (UK) or JPG (US) in the download dialogue box.

Download agreement


DOWNLOAD AGREEMENT

Light, Colour, Vision & How To See More (https://lightcolourvision.org) : Copyright © 2015-2022 : MediaStudies Trust.

Unless stated otherwise the author of all images and written content on lightcolourvision.org is Ric Mann.

ALL RIGHTS RESERVED

No part of this website may be copied, displayed, extracted, reproduced, utilised, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical or otherwise including but not limited to photocopying, recording, or scanning without the prior written permission of MediaStudies Trust.

EXCEPTIONS

Exceptions to the above statement are made for personal, educational and non-profit purposes:

Before downloading, cutting and pasting or reproducing any information, images or other assets found on lightcolourvision.org we ask you to agree to the following terms:

  1. All information, images and other assets displayed and made available for download on the lightcolourvision.org website are copyright. This means there are limitations on how they can be used.
  2. All information, images and other assets displayed or made available for download are solely and exclusively to be used for personal, educational and non-profit purposes.
  3. When you find the resources you need, then part of the download process involves you (the user) ticking a box to let us (at lightcolourvision.org) know we both agree on how the material can be used.
  4. Please contact [email protected] before considering any use not covered by the terms of the agreement above.

The copyright to all information, images and all other assets (unless otherwise stated) belongs to:

The Trustees. MediaStudies Trust
111 Lynbrooke Avenue
Blockhouse Bay
Auckland 0600
New Zealand
[email protected]

We love feedback

Your name and email address will be used solely to provide you with information you have specifically requested. See our privacy policy at https://lightcolourvision.org/privacy/.


We welcome your feedback 🙂









    Note: The feedback form records the URL of the current page


    Thank you so much for your time and effort