Rainbows Seen From the Ground

$0.00

This is one of a set of almost 40 diagrams exploring Rainbows.


Each diagram appears on a separate page and is supported by a full explanation.

  • Follow the links embedded in the text for definitions of all the key terms.
  • For quick reference don’t miss the summaries of key terms further down each page.

Description

Rainbows Seen From the Ground

TRY SOME QUICK QUESTIONS AND ANSWERS TO GET STARTED
Yes! A rainbow can form a complete circle when seen from a plane.
No! Rainbows are not always visible at midday because their whole circumference can be below the horizon when the sun is high in the sky.
Rainbows appear when bright sunshine is refracted, reflected and dispersed in raindrops in the presence of an observer.
Yes! In ideal conditions, atmospheric rainbows produce a continuous spectrum of colours inclusive of all wavelengths of the visible spectrum.
Rainbows appear as bands of colour because our eyes tend to see some wavelengths of light as being brighter and so more distinct than others.

About the Diagram

An overview of rainbows

An atmospheric rainbow is an arc or circle of spectral colours and appears in the sky when an observer is in the presence of strong sunshine and rain.

  • Atmospheric rainbows:
    • Are caused by sunlight reflecting, refracting and dispersing inside raindrops before being seen by an observer.
    • Appear in the section of the sky directly opposite the Sun from the point of view of an observer.
    • Become visible when millions of raindrops reproduce the same optical effects.
  • Atmospheric rainbows often appear as a shower of rain is approaching, or has just passed over. The falling raindrops form a curtain on which sunlight falls.
  • To see an atmospheric rainbow, the rain must be in front of the observer and the Sun must be in the opposite direction, at their back.
  • A rainbow can form a complete circle when seen from a plane, but from the ground, an observer usually sees the upper half of the circle with the sky as a backdrop.
  • Rainbows are curved because light is reflected, refracted and dispersed symmetrically around their centre-point.
  • The centre-point of a rainbow is sometimes called the anti-solar point. ‘Anti’, because it is opposite the Sun with respect to the observer.
  • An imaginary straight line can always be drawn that passes through the Sun, the eyes of an observer and the anti-solar point – the geometric centre of a rainbow.
  • A section of a rainbow can easily disappear if anything gets in the way and forms a shadow. Hills, trees, buildings and even the shadow of an observer can cause a portion of a rainbow to vanish.
  • Not all rainbows are ‘atmospheric’. They can be produced by waterfalls, lawn sprinklers and anything else that creates a fine spray of water droplets in the right conditions.
About the diagram: Atmospheric rainbow summary
Visual processing

Visual processing is a complex and dynamic process that involves interactions between various retinal cells, neural pathways, and brain regions, ultimately leading to conscious visual perception.

Visual processing begins the moment light enters the human eye. It then progresses through multiple stages as signals travel towards the visual cortex, where the neural activity is integrated, resulting in conscious visual experience.

As visual processing begins the retina starts to process information about colors, as well as basic information about the shape and movement associated with those colors. By the end of this stage, multiple forms of information about a visual scene are ready to be conveyed to higher brain regions.

Let’s examine two major forms of processing, trichromatic and opponent-processing, which occur within the eyeball as visual information is gathered from light entering our eyes.

Trichromacy, also known as the trichromatic theory of colour vision, explains how three types of cone receptors in the retina work together with bipolar cells to perform their role in the initial stage of colour processing. Rod cells also play a significant role in this form of processing visual information, particularly in low-light conditions.

Opponent-processing, also known as the opponent-process theory of colour vision, explains the second form of processing. Opponent-processing involves ganglion cells that process the data received from trichromatic processing and combine it with other intercellular activities.

It is interesting to note that as both trichromatic and opponent-process theories developed over the last century, researchers and authors have often pitted one theory against the other. However, both processes are crucial for understanding how colour vision occurs.

Trichromatic theory explains the encoding of visual information when light hits the retina, while opponent-processing explains a subsequent stage of information convergence, assembly, and coding before the data leaves the retina via the optic nerve.

Note that:

  • Both trichromatic and opponent-processing occur independently within each retina, without comparing with the other.
  • Each eye gathers information from a specific viewpoint, approximately 50 mm to the left or right of the nose.
  • The two impressions are later compared and combined to provide us with a single three-dimensional, stereoscopic view of the world, rather than two flattened images.

We can consider the layers of retinal cells involved in trichromatic and opponent-processing as examining, interpreting, and transmitting visually relevant information. However, it would be incorrect to view this as a straightforward linear process due to the intricate neural networking, cross-referencing, and feedback loops within the retina.

Some Key Terms

  • The observer effect is a principle of physics and states that any interaction between a particle and a measuring device will inevitably change the state of the particle. This is because the act of measurement itself imposes a disturbance on the particle’s wave function, which is the mathematical description of its state.
  • The concept of observation refers to the act of engaging with an electron or other particle, achieved through measuring its position or momentum.
  • In the context of quantum mechanics, observation isn’t a passive undertaking, observation actively alters a particle’s state.
  • This means that any kind of interaction with an atom, or with one of its constituent particles, that provides insight into its state results in a change to that state. The act of observation is always intrusive and will always change the state of the object being observed.
  • It can be challenging to reconcile this with our daily experience, where we believe we can observe things without inducing any change in them.

A rainbow is an optical effect produced by illuminated droplets of water. Rainbows are caused by reflection, refraction (bending) and dispersion (spreading out) of light in individual droplets and result in the appearance of an arc of spectral colours.

  • Atmospheric rainbows only appear when weather conditions are ideal and an observer is in the right place at the right time.
  • Waterfalls, lawn sprinklers and other things that produce air-borne water droplets can produce a rainbow.
  • An atmospheric rainbow is formed from countless individual droplets each of which reflects and refracts a tiny coloured image of the Sun towards the observer.
  • As white light passes through water droplets, refraction causes the light to disperse and separate into the different colours seen by an observer.
  • If the sun is behind an observer then the rainbow will appear in front of them.
  • When a rainbow is produced by sunlight, the angles between the sun, each droplet and the observer determine which ones will form part of the rainbow, the colour each droplet will produce and the sequence in which they appear.

Visual perception is the human ability to see and understand our surroundings by virtue of the sensitivity of our eyes to wavelengths of light across the entire visible spectrum, from red to violet.

  • Visual perception is a complex process that relies on the intricate interaction between our eyes, the brain, and the interpretation of light signals. It enables us to perceive various visual attributes such as shapes, sizes, textures, depths, motions, and spatial relationships, all of which contribute to our comprehensive understanding and interpretation of the visual world around us.

White light is the term for visible light that contains all wavelengths of the visible spectrum at equal intensities.

  • The sun emits white light because sunlight contains all the wavelengths of the visible spectrum in roughly equal proportions.
  • Light travelling through a vacuum or a medium is termed white light if it includes all wavelengths of visible light.
  • Light travelling through a vacuum or air is not visible to our eyes unless it interacts with something.
  • The term white light can have two meanings:
    • It can refer to a combination of all wavelengths of visible light travelling through space, regardless of observation.
    • What a person sees when all colours of the visible spectrum hit a white or neutral-coloured surface.

A human observer is a person who engages in observation by watching things.

  • In the presence of visible light, an observer perceives colour because the retina at the back of the human eye is sensitive to wavelengths of light that fall within the visible part of the electromagnetic spectrum.
  • The visual experience of colour is associated with words such as red, blue, yellow, etc.
  • The retina’s response to visible light can be described in terms of wavelength, frequency and brightness.
  • Other properties of the world around us must be inferred from light patterns.
  • An observation can take many forms such as:
    • Watching an ocean sunset or the sky at night.
    • Studying a baby’s face.
    • Exploring something that can’t be seen by collecting data from an instrument or machine.
    • Experimenting in a laboratory setting.

 

A light source is a natural or man-made object that emits one or more wavelengths of light.

  • The Sun is the most important light source in our lives and emits every wavelength of light in the visible spectrum.
  • Celestial sources of light include other stars, comets and meteors.
  • Other natural sources of light include lightning, volcanoes and forest fires.
  • There are also bio-luminescent light sources including some species of fish and insects as well as types of bacteria and algae.
  • Man-made light sources of the most simple type include natural tars and resins, wax candles, lamps that burn oil, fats or paraffin and gas lamps.
  • Modern man-made light sources include tungsten light sources. These are a type of incandescent source which means they radiate light when electricity is used to heat a filament inside a glass bulb.
  • Halogen bulbs are more efficient and long-lasting versions of incandescent tungsten lamps and produce a very uniform bright light throughout the bulb’s lifetime.
  • Fluorescent lights are non-incandescent sources of light. They generally work by passing electricity through a glass tube of gas such as mercury, neon, argon or xenon instead of a filament. These lamps are very efficient at emitting visible light, produce less waste heat, and typically last much longer than incandescent lamps.
  • An LED (Light Emitting Diode) is an electroluminescent light source. It produces light by passing an electrical charge across the junction of a semiconductor.
  • Made-made lights can emit a single wavelength, bands of wavelengths or combinations of wavelengths.
  • An LED light typically emits a single colour of light which is composed of a very narrow range of wavelengths.

The spectral colour model represents the range of pure colours that correspond to specific wavelengths of visible light. These colours are called spectral colours because they are not created by mixing other colours but are produced by a single wavelength of light. This model is important because it directly reflects how human vision perceives light that comes from natural sources, like sunlight, which contains a range of wavelengths.

  • The spectral colour model is typically represented as a continuous strip, with red at one end (longest wavelength) and violet at the other (shortest wavelength).
  • Wavelengths and Colour Perception: In the spectral colour model, each wavelength corresponds to a distinct colour, ranging from red (with the longest wavelength, around 700 nanometres) to violet (with the shortest wavelength, around 400 nanometres). The human eye perceives these colours as pure because they are not the result of mixing other wavelengths.
  • Pure Colours: Spectral colours are considered “pure” because they are made up of only one wavelength. This is in contrast to colours produced by mixing light (like in the RGB colour model) or pigments (in the CMY model), where a combination of wavelengths leads to different colours.
  • Applications: The spectral colour model is useful in understanding natural light phenomena like rainbows, where each visible colour represents a different part of the light spectrum. It is also applied in fields like optics to describe how the eye responds to light in a precise, measurable way.

The visible spectrum is the range of wavelengths of the electromagnetic spectrum that correspond with all the different colours we see in the world.

  • As light travels through the air it is invisible to our eyes.
  • Human beings don’t see wavelengths of light, but they do see the spectral colours that correspond with each wavelength and colours produced when different wavelengths are combined.
  • The visible spectrum includes all the spectral colours between red and violet and each is produced by a single wavelength.
  • The visible spectrum is often divided into named colours, though any division of this kind is somewhat arbitrary.
  • Traditional colours referred to in English include red, orange, yellow, green, blue, and violet.

Visible light is the range of wavelengths of electromagnetic radiation perceived as colour by human observers.

  • Visible light is a form of electromagnetic radiation.
  • Other forms of electromagnetic radiation include radio waves, microwaves, infrared, ultraviolet, X-rays, and gamma rays.
  • Visible light is perceived by a human observer as all the spectral colours between red and violet plus all other colours that result from combining wavelengths together in different proportions.
  • A spectral colour is produced by a single wavelength of light.
  • The complete range of colours that can be perceived by a human observer is called the visible spectrum.
  • The range of wavelengths that produce visible light is a very small part of the electromagnetic spectrum.

Visible light refers to the range of wavelengths of electromagnetic radiation that is perceived as colour by human observers. While the range of visible light is generally considered to be 400-700 nm, the exact range of colours perceptible can vary slightly between individuals.

  • Visible light is one form of electromagnetic radiation. Other forms of electromagnetic radiation include radio waves, microwaves, infrared, ultraviolet, X-rays, and gamma rays. Visible light ranges from approximately 400 nanometres (nm) for violet to 700 nm for red.
  • A human observer perceives visible light as a combination of all the spectral colours between red and violet, as well as a vast range of other colours produced from the blending of different wavelengths in varying proportions.

Diagrams are free to download

Downloads: Slides or Illustrations


DOWNLOAD DIAGRAMS
  • SLIDES are optimized for viewing on-screen.
  • ILLUSTRATIONS are optimized for printing on A4 pages in portrait format.
SLIDES
  • Slides are available in JPG and AI (Adobe Illustrator) file formats.
  • Titles: Slides have titles.
  • Backgrounds: Black.
  • Size: 1686 x 1124 pixels (3:2 aspect ratio).
ILLUSTRATIONS
  • Illustrations are available in JPG and AI two file formats.
  • Titles: No titles.
  • Backgrounds: White.
  • Size: 1686 x 1124 (3:2 aspect ratio). So all illustrations reproduce at the same scale when inserted into Word documents etc.
  • Labels: Calibri 24pt Italic.

File formats: JPG & AI


DOWNLOAD THE DIAGRAM ON THIS PAGE AS A JPG FILE
  • JPG (JPEG) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
  • If a JPG diagram doesn’t fit your needs, you can download it as an AI (Adobe Illustrator) file and edit it yourself.
  • JPG files can be placed or pasted directly into MS Office documents.
DOWNLOAD THE DIAGRAM ON THIS PAGE AS AN AI file
  • All AI (Adobe Illustrator) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
  • All our diagrams are created in Adobe Illustrator as vector drawings.
  • Save as or export AI files to other formats including PDF (.pdf), PNG (.png), JPG (.jpeg) and SVG(.svg) etc.

Spelling: UK & US


We use English (UK) spelling by default here at lightcolourvision.org.

COPY & PASTING TEXT
  • After copy/pasting text please do a spell-check to change our spelling to match your own document.
DOWNLOAD DIAGRAMS
  • Download AI versions of diagrams to change the spelling or language used for titles, labels etc.
  • We are adding American English (US) versions of diagrams on request. Just contact us and let us know what you need.
  • When downloading JPG versions of diagrams, look out for JPG (UK) or JPG (US) in the download dialogue box.

Download agreement


DOWNLOAD AGREEMENT

Light, Colour, Vision & How To See More (https://lightcolourvision.org) : Copyright © 2015-2022 : MediaStudies Trust.

Unless stated otherwise the author of all images and written content on lightcolourvision.org is Ric Mann.

ALL RIGHTS RESERVED

No part of this website may be copied, displayed, extracted, reproduced, utilised, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical or otherwise including but not limited to photocopying, recording, or scanning without the prior written permission of MediaStudies Trust.

EXCEPTIONS

Exceptions to the above statement are made for personal, educational and non-profit purposes:

Before downloading, cutting and pasting or reproducing any information, images or other assets found on lightcolourvision.org we ask you to agree to the following terms:

  1. All information, images and other assets displayed and made available for download on the lightcolourvision.org website are copyright. This means there are limitations on how they can be used.
  2. All information, images and other assets displayed or made available for download are solely and exclusively to be used for personal, educational and non-profit purposes.
  3. When you find the resources you need, then part of the download process involves you (the user) ticking a box to let us (at lightcolourvision.org) know we both agree on how the material can be used.
  4. Please contact [email protected] before considering any use not covered by the terms of the agreement above.

The copyright to all information, images and all other assets (unless otherwise stated) belongs to:

The Trustees. MediaStudies Trust
111 Lynbrooke Avenue
Blockhouse Bay
Auckland 0600
New Zealand
[email protected]

We love feedback

Your name and email address will be used solely to provide you with information you have specifically requested. See our privacy policy at https://lightcolourvision.org/privacy/.


We welcome your feedback 🙂









    Note: The feedback form records the URL of the current page


    Thank you so much for your time and effort