Facts about White Light
$0.00
This diagram introduces white light, the name given to light that contains all wavelength of the visible spectrum.
Remember that:
Description
Facts about White Light
TRY SOME QUICK QUESTIONS AND ANSWERS TO GET STARTED
About the diagram
About the diagram
- This diagram introduces white light, the name given to light that contains all wavelengths of the visible spectrum.
Remember that:
- White light contains all the wavelengths of the visible spectrum, but to produce white light, each wavelength must be of equal intensity.
- White light contains all wavelengths of light that correspond with the colours of the rainbow.
- The white light human beings see does not include infrared and ultraviolet wavelengths of light because they are outside the visible spectrum.
Now let’s look at that in detail:
- White light is the name given to visible light that contains all wavelengths of the visible spectrum at equal intensities.
- As light travels through a vacuum or a medium it is described as white light if it contains all the wavelengths of visible light.
- As light travels through the air it is invisible to our eyes.
- The term white light doesn’t mean light is white as it travels through the air.
- When white light strikes a neutral-coloured object and all wavelengths are reflected it appears white to an observer.
- When some wavelengths are absorbed by an object and others are reflected then it is the reflected wavelengths that determine the colour an observer sees.
Some key terms
Sunlight, also known as daylight or visible light, refers to the portion of electromagnetic radiation emitted by the Sun that is detectable by the human eye. It is one form of the broad range of electromagnetic radiation produced by the Sun. Our eyes are particularly sensitive to this specific range of wavelengths, enabling us to perceive the Sun and the world around us.
- Sunlight is only one form of electromagnetic radiation emitted by the Sun.
- Sunlight is only a very small part of the electromagnetic spectrum.
- Sunlight is the form of electromagnetic radiation that our eyes are sensitive to.
- Other types of electromagnetic radiation that we are sensitive to, but cannot see, are infrared radiation that we feel as heat and ultraviolet radiation that causes sunburn.
RGB colour is an additive colour model in which red, green and blue light is combined to reproduce a wide range of other colours.
- The primary colours in the RGB colour model are red, green and blue.
- In the RGB model, different combinations and intensities of red, green, and blue light are mixed to create various colours. When these three colours are combined at full intensity, they produce white light.
- Additive colour models are concerned with mixing light, not dyes, inks or pigments (these rely on subtractive colour models such as the RYB colour model and the CMY colour model).
- The RGB colour model works in practice by asking three questions of any colour: how red is it (R), how green is it (G), and how blue is it (B).
- The RGB model is popular because it can easily produce a comprehensive palette of 1530 vivid hues simply by adjusting the combination and amount of each of the three primaries it contains.
Electromagnetic radiation is a type of energy more commonly simply called light. Detached from its source, it is transported by electromagnetic waves (or their quanta, photons) and propagates through space at the speed of light.
- Electromagnetic radiation (EM radiation or EMR) includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.
- Man-made technologies that produce electromagnetic radiation include radio and TV transmitters, radar, MRI scanners, microwave ovens, computer screens, mobile phones, all types of lights and lamps, electric blankets, electric bar heaters, lasers and x-ray machines.
- At the quantum scale of electromagnetism, electromagnetic radiation is described in terms of photons rather than waves. Photons are elementary particles responsible for all electromagnetic phenomena.
- The term quantum refers to the smallest quantity into which something can be divided. A quantum of a thing is indivisible into smaller units so they have no sub-structure. A photon is a quantum of electromagnetic radiation.
- A single photon with a wavelength corresponding with gamma rays might carry 100,000 times the energy of a single photon of visible light.
Wavelength is the distance from any point on a wave to the corresponding point on the next wave. This measurement is taken along the middle line of the wave.
- While wavelength can be measured from any point on a wave, it is often simplest to measure from the peak of one wave to the peak of the next, or from the bottom of one trough to the bottom of the next, ensuring the measurement covers a whole wave cycle.
- The wavelength of an electromagnetic wave is usually given in metres.
- The wavelength of visible light is typically measured in nanometres, with 1,000,000,000 nanometres making up a metre.
- Each type of electromagnetic radiation – such as radio waves, visible light, and gamma waves – corresponds to a specific range of wavelengths on the electromagnetic spectrum.
Chromatic dispersion is the process where light, under specific conditions, splits into its constituent wavelengths, and the colours linked with each wavelength become visible to a human observer.
- Chromatic dispersion is the result of the connection between wavelength and refractive index..
- When light moves from one medium (like air) to another (like water or glass), each wavelength is influenced to a varying extent based on the refractive index of the involved media. The outcome is that every wavelength changes its direction and speed.
- If the light source emits white light, the individual wavelengths spread out, with red at one end and violet at the other.
- A familiar example of chromatic dispersion is when white light strikes raindrops and a rainbow becomes visible to an observer.
The visible part of the electromagnetic spectrum is called the visible spectrum.
- The visible spectrum is the range of wavelengths of the electromagnetic spectrum that correspond with all the different colours we see in the world.
- As light travels through the air it is invisible to our eyes.
- Human beings don’t see wavelengths of light, but they do see the spectral colours that correspond with each wavelength and colours produced when different wavelengths are combined.
- The visible spectrum includes all the spectral colours between red and violet and each is produced by a single wavelength.
- The visible spectrum is often divided into named colours, though any division of this kind is somewhat arbitrary.
- Traditional colours referred to in English include red, orange, yellow, green, blue, and violet.
The visible spectrum is the range of wavelengths of the electromagnetic spectrum that correspond with all the different colours we see in the world.
- As light travels through the air it is invisible to our eyes.
- Human beings don’t see wavelengths of light, but they do see the spectral colours that correspond with each wavelength and colours produced when different wavelengths are combined.
- The visible spectrum includes all the spectral colours between red and violet and each is produced by a single wavelength.
- The visible spectrum is often divided into named colours, though any division of this kind is somewhat arbitrary.
- Traditional colours referred to in English include red, orange, yellow, green, blue, and violet.
The electromagnetic spectrum includes electromagnetic waves with all possible wavelengths of electromagnetic radiation, ranging from low-energy radio waves through visible light to high-energy gamma rays.
- There are no precisely defined boundaries between the bands of electromagnetic radiation in the electromagnetic spectrum.
- The electromagnetic spectrum includes, in order of increasing frequency and decreasing wavelength: radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.
- Visible light is only a very small part of the electromagnetic spectrum.
Diagrams are free to download
Downloads: Slides or Illustrations
DOWNLOAD DIAGRAMS
- SLIDES are optimized for viewing on-screen.
- ILLUSTRATIONS are optimized for printing on A4 pages in portrait format.
SLIDES
- Slides are available in JPG and AI (Adobe Illustrator) file formats.
- Titles: Slides have titles.
- Backgrounds: Black.
- Size: 1686 x 1124 pixels (3:2 aspect ratio).
ILLUSTRATIONS
- Illustrations are available in JPG and AI two file formats.
- Titles: No titles.
- Backgrounds: White.
- Size: 1686 x 1124 (3:2 aspect ratio). So all illustrations reproduce at the same scale when inserted into Word documents etc.
- Labels: Calibri 24pt Italic.
File formats: JPG & AI
DOWNLOAD THE DIAGRAM ON THIS PAGE AS A JPG FILE
- JPG (JPEG) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
- If a JPG diagram doesn’t fit your needs, you can download it as an AI (Adobe Illustrator) file and edit it yourself.
- JPG files can be placed or pasted directly into MS Office documents.
DOWNLOAD THE DIAGRAM ON THIS PAGE AS AN AI file
- All AI (Adobe Illustrator) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
- All our diagrams are created in Adobe Illustrator as vector drawings.
- Save as or export AI files to other formats including PDF (.pdf), PNG (.png), JPG (.jpeg) and SVG(.svg) etc.
Spelling: UK & US
We use English (UK) spelling by default here at lightcolourvision.org.
COPY & PASTING TEXT
- After copy/pasting text please do a spell-check to change our spelling to match your own document.
DOWNLOAD DIAGRAMS
- Download AI versions of diagrams to change the spelling or language used for titles, labels etc.
- We are adding American English (US) versions of diagrams on request. Just contact us and let us know what you need.
- When downloading JPG versions of diagrams, look out for JPG (UK) or JPG (US) in the download dialogue box.
Download agreement
DOWNLOAD AGREEMENT
Light, Colour, Vision & How To See More (https://lightcolourvision.org) : Copyright © 2015-2022 : MediaStudies Trust.
Unless stated otherwise the author of all images and written content on lightcolourvision.org is Ric Mann.
ALL RIGHTS RESERVED
No part of this website may be copied, displayed, extracted, reproduced, utilised, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical or otherwise including but not limited to photocopying, recording, or scanning without the prior written permission of MediaStudies Trust.
EXCEPTIONS
Exceptions to the above statement are made for personal, educational and non-profit purposes:
Before downloading, cutting and pasting or reproducing any information, images or other assets found on lightcolourvision.org we ask you to agree to the following terms:
- All information, images and other assets displayed and made available for download on the lightcolourvision.org website are copyright. This means there are limitations on how they can be used.
- All information, images and other assets displayed or made available for download are solely and exclusively to be used for personal, educational and non-profit purposes.
- When you find the resources you need, then part of the download process involves you (the user) ticking a box to let us (at lightcolourvision.org) know we both agree on how the material can be used.
- Please contact [email protected] before considering any use not covered by the terms of the agreement above.
The copyright to all information, images and all other assets (unless otherwise stated) belongs to:
The Trustees. MediaStudies Trust
111 Lynbrooke Avenue
Blockhouse Bay
Auckland 0600
New Zealand
[email protected]
We love feedback
Your name and email address will be used solely to provide you with information you have specifically requested. See our privacy policy at https://lightcolourvision.org/privacy/.
We welcome your feedback 🙂