Chemiluminescence is a type of luminescence where light is emitted as a direct result of a chemical reaction. Unlike other luminescence mechanisms that might involve external energy sources such as light or electricity, chemiluminescence relies solely on the chemical energy stored within the reacting molecules.
Key features of chemiluminescence
- Energy source: Chemical reactions release energy in various forms, including light. This energy excites electrons in chemiluminescence, leading them to higher energy levels.
- Electron transitions: Excited electrons return to their ground state, releasing excess energy as light. This emission determines the light’s colour.
- Examples: Glow sticks, luminous fungi, and deep-sea organisms.
- Variations: Emitted light characteristics (intensity, colour, duration) depend on the specific chemical reaction.
Mechanisms of chemiluminescence
- Electron transfer: One reactant loses an electron (oxidation), the other gains an electron (reduction). This transfer can excite an electron in the accepting molecule, leading to light emission.
- Excited intermediates: Some reactions create intermediate molecules in excited states. These release excess energy as light when returning to their ground state.
- Free radicals: Highly reactive free radicals can undergo rearrangements or reactions with other molecules, releasing energy as light.
Applications
- Chemical analysis: Detecting specific substances based on unique light emission patterns of certain reactions.
- Biological research: Studying biological processes involving chemiluminescent molecules in organisms.
- Safety devices: Light sticks for emergency lighting or marking locations use chemiluminescent reactions.
Light sources | Emission mechanism | Description | Examples |
---|---|---|---|
LIGHT-EMITTING PROCESS | |||
Luminescence | Light emission due to the excitation of electrons in a material. | Electrons within a material gain energy and then release light as they return to a lower energy state. | Bioelectroluminescence Electroluminescence Photoluminescence - Fluorescence - Phosphorescence Sonoluminescence Thermoluminescence |
Blackbody radiation (Type of thermal radiation) | Electromagnetic radiation (including visible light) emitted by any object with a temperature above absolute zero. | Electromagnetic radiation (including visible light) emitted by any object with a temperature above absolute zero. | All objects above temperature of absolute zero. |
Chemiluminescence | Light from natural and artificial chemical reactions. | Light from natural and artificial chemical reactions. | Bioluminescence Chemiluminescent reactions: - Luminol reactions - Ruthenium chemiluminescence |
Nuclear reaction | Light emission as a byproduct of nuclear reactions (fusion or fission). | Light emitted as a byproduct of nuclear reactions. | Nuclear reactors Stars undergoing fusion |
Thermal radiation | Light emission due to the thermal excitation of atoms and molecules at high temperatures. | Light emission due to the thermal excitation of atoms and molecules. | Sun Stars Incandescent light bulbs |
Triboluminescence | Light emission due to mechanical stress applied to a material. | Light emission due to the mechanical stress applied to a material, causing the movement of electric charges and subsequent light emission. | Sugar crystals cracking Adhesive tape peeling Quartz crystals fracturing. |
Natural light source | |||
Fireflies Deep-sea creatures Glowing mushrooms | Bioluminescence | Light emission from biological organisms. | Involves the luciferase enzyme. |
Sun Stars | Nuclear Fusion | Light emission as a byproduct of nuclear fusion reactions in stars. | Electromagnetic spectrum (visible light, infrared, ultraviolet). |
Fire Candles | Thermal radiation | Light emission due to the thermal excitation of atoms and molecules during the combustion of a fuel source. | Burning of a fuel source, releasing heat and light. |
Artificial light source | |||
Fluorescent lights Highlighters Safety vests | Chemiluminescence | Light emission from chemical reactions. | Fluorescence (absorption and re-emission of light). |
Glow sticks Emergency signs | Chemiluminescence | Light emission due to phosphorescence - a type of chemiluminescence. | A type of chemiluminescence where light emission is delayed after the initial excitation. |
Glow sticks Light sticks | Chemiluminescence | Chemiluminescence | Light emission from a chemical reaction that does not involve combustion. |
Tungsten light bulbs Toasters | Thermal radiation | Heated filament radiates light and heat. | Light emission from a hot filament. |
Fluorescent lamps LED lights | Electroluminescence | Excitation of atoms by electric current. | Light emission when electric current excites atoms in a material. |
Neon signs | Electrical Discharge | Discharge of electricity through gas. | Light emission when electricity flows through a gas. |
Sugar crystals cracking Pressure-sensitive adhesives | Triboluminescence | Light emission from friction or pressure. | Light emission due to mechanical forces. |
Fluorescent paint Highlighters Safety vests | Photoluminescence | Absorption and subsequent re-emission of light at a lower energy. | Absorption and re-emission of light. |
Light Sources: Mechanism, examples, and everyday applications
Footnote: Cerenkov radiation and Synchrotron radiation are not included in the table because they are not conventionally classified as light sources.
Summary