Chromatic dispersion

Chromatic dispersion means dispersion according to colour and associated wavelengths of light. Under certain conditions, chromatic dispersion causes light to separate into its component wavelengths producing a rainbow of colours for a human observer.

  • Chromatic dispersion is best demonstrated by passing a beam of light through a glass prism.
  • A familiar example of chromatic dispersion is when white light strikes raindrops and a rainbow of colours becomes visible to an observer.
  • As light first enters and then exits each raindrop, it separates into its component wavelengths which the observer sees as a band of distinct colours.
  • Chromatic dispersion can be explained in terms of the relationship between wavelength and refractive index.
  • When light propagates from one medium (such as air) to another (such as glass or water) every wavelength of light is affected to a different degree according to the refractive index of the media concerned. As a result, each wavelength changes direction by a different degree. In the case of white light, the separate wavelengths fan out with red on one side and violet on the other.
  • Remember that wavelength is a property of electromagnetic radiation, whilst colour is a feature of visual perception.