Response of Human Cone Cells to Colour

$0.00

This diagram is a new addition to the site! More information will be added ASAP 🙂

Description

Response of Human Cone Cells to Colour

TRY SOME QUICK QUESTIONS AND ANSWERS TO GET STARTED
Researchers estimate the number of colours the human eye can distinguish is between one and seven million.
No! Human vision relies on trichromacy, not the RGB colour model. However, the RGB colour model takes advantage of the way the human eye responds to red, green and blue light to reproduce and organise colours.
Photo-transduction takes place when rod and cone cells in the human eye convert their chemical response to light into electrical signals ready to input into the visual system.
Yes! Things appear coloured to an observer because colour corresponds with a property of light that is visible to the human eye.

About the diagram

Some key terms

Visible light refers to the range of wavelengths of electromagnetic radiation that is perceived as colour by human observers. While the range of visible light is generally considered to be 400-700 nm, the exact range of colours perceptible can vary slightly between individuals.

  • Visible light is one form of electromagnetic radiation. Other forms of electromagnetic radiation include radio waves, microwaves, infrared, ultraviolet, X-rays, and gamma rays. Visible light ranges from approximately 400 nanometres (nm) for violet to 700 nm for red.
  • A human observer perceives visible light as a combination of all the spectral colours between red and violet, as well as a vast range of other colours produced from the blending of different wavelengths in varying proportions.

A human observer is a person who engages in observation by watching things.

  • In the presence of visible light, an observer perceives colour because the retina at the back of the human eye is sensitive to wavelengths of light that fall within the visible part of the electromagnetic spectrum.
  • The visual experience of colour is associated with words such as red, blue, yellow, etc.
  • The retina’s response to visible light can be described in terms of wavelength, frequency and brightness.
  • Other properties of the world around us must be inferred from light patterns.
  • An observation can take many forms such as:
    • Watching an ocean sunset or the sky at night.
    • Studying a baby’s face.
    • Exploring something that can’t be seen by collecting data from an instrument or machine.
    • Experimenting in a laboratory setting.

 

Trichromacy is the form of colour vision (trichromatic colour vision) possessed by human beings and other trichromats. It involves three different types of cone cells and one type of rod cell within the retina of the eye. Three independent channels convey colour information to subsequent visual processing centres and towards the visual cortex of the brain.

  • Trichromatic colour theory of human vision explores various aspects of trichromacy, including:
    • The functions, differences, and connections between the three types of cone cells (and the one type of rod cell) and other types of neurons within the human retina.
    • The sensitivity of the three types of cones to three overlapping ranges of wavelengths of light that make up the visible spectrum and enable trichromatic colour vision.
    • The sensitivity and function of rod cells in low levels of lighting.
    • The role of rods and cones in encoding colour information in anticipation of subsequent stages of visual processing.
    • The details of how colour information is produced across the entire surface of the retina of both eyes is encoded onto separate channels.
  • Colour vision is the human ability to distinguish between objects based on the wavelengths of the light they emit, reflect or transmit. The human eye and brain together translate light into colour.
  • Colour is not a property of electromagnetic radiation, but a feature of visual perception.
  • The human eye, and so human perception, is tuned to the range of wavelengths of light that make up the visible spectrum and so to the corresponding spectral colours between red and violet.
  • Light, however, is rarely of a single wavelength, so an observer will usually be exposed to a spread of different wavelengths of light or a mixture of wavelengths from different areas of the spectrum.
  • An observer’s perception of colour is a subjective process as the eyes and brain respond together to stimuli produced when incoming light reacts with light-sensitive cells within the retina at the back of the eye.
  • The perception of colour can be influenced by various factors, such as lighting conditions, surrounding colours, and individual differences in colour perception.

Visible light is the range of wavelengths of electromagnetic radiation perceived as colour by human observers.

  • Visible light is a form of electromagnetic radiation.
  • Other forms of electromagnetic radiation include radio waves, microwaves, infrared, ultraviolet, X-rays, and gamma rays.
  • Visible light is perceived by a human observer as all the spectral colours between red and violet plus all other colours that result from combining wavelengths together in different proportions.
  • A spectral colour is produced by a single wavelength of light.
  • The complete range of colours that can be perceived by a human observer is called the visible spectrum.
  • The range of wavelengths that produce visible light is a very small part of the electromagnetic spectrum.

Colour is not a property of electromagnetic radiation, but a feature of visual perception by an observer.

  • The human eye and so human visual perception are tuned to the visible spectrum and so to spectral colours between red and violet.
  • There are no properties of electromagnetic radiation that distinguish visible light from other parts of the electromagnetic spectrum.
  • Objects appear to be different colours to an observer depending on the wavelengths, frequencies and amplitude of visible light at the moment it strikes the retina at the back of the eye.
  • The observer effect is a principle of physics and states that any interaction between a particle and a measuring device will inevitably change the state of the particle. This is because the act of measurement itself imposes a disturbance on the particle’s wave function, which is the mathematical description of its state.
  • The concept of observation refers to the act of engaging with an electron or other particle, achieved through measuring its position or momentum.
  • In the context of quantum mechanics, observation isn’t a passive undertaking, observation actively alters a particle’s state.
  • This means that any kind of interaction with an atom, or with one of its constituent particles, that provides insight into its state results in a change to that state. The act of observation is always intrusive and will always change the state of the object being observed.
  • It can be challenging to reconcile this with our daily experience, where we believe we can observe things without inducing any change in them.

Visual perception is the human ability to see and understand our surroundings by virtue of the sensitivity of our eyes to wavelengths of light across the entire visible spectrum, from red to violet.

  • Visual perception is a complex process that relies on the intricate interaction between our eyes, the brain, and the interpretation of light signals. It enables us to perceive various visual attributes such as shapes, sizes, textures, depths, motions, and spatial relationships, all of which contribute to our comprehensive understanding and interpretation of the visual world around us.

Diagrams are free to download

Downloads: Slides or Illustrations


DOWNLOAD DIAGRAMS
  • SLIDES are optimized for viewing on-screen.
  • ILLUSTRATIONS are optimized for printing on A4 pages in portrait format.
SLIDES
  • Slides are available in JPG and AI (Adobe Illustrator) file formats.
  • Titles: Slides have titles.
  • Backgrounds: Black.
  • Size: 1686 x 1124 pixels (3:2 aspect ratio).
ILLUSTRATIONS
  • Illustrations are available in JPG and AI two file formats.
  • Titles: No titles.
  • Backgrounds: White.
  • Size: 1686 x 1124 (3:2 aspect ratio). So all illustrations reproduce at the same scale when inserted into Word documents etc.
  • Labels: Calibri 24pt Italic.

File formats: JPG & AI


DOWNLOAD THE DIAGRAM ON THIS PAGE AS A JPG FILE
  • JPG (JPEG) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
  • If a JPG diagram doesn’t fit your needs, you can download it as an AI (Adobe Illustrator) file and edit it yourself.
  • JPG files can be placed or pasted directly into MS Office documents.
DOWNLOAD THE DIAGRAM ON THIS PAGE AS AN AI file
  • All AI (Adobe Illustrator) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
  • All our diagrams are created in Adobe Illustrator as vector drawings.
  • Save as or export AI files to other formats including PDF (.pdf), PNG (.png), JPG (.jpeg) and SVG(.svg) etc.

Spelling: UK & US


We use English (UK) spelling by default here at lightcolourvision.org.

COPY & PASTING TEXT
  • After copy/pasting text please do a spell-check to change our spelling to match your own document.
DOWNLOAD DIAGRAMS
  • Download AI versions of diagrams to change the spelling or language used for titles, labels etc.
  • We are adding American English (US) versions of diagrams on request. Just contact us and let us know what you need.
  • When downloading JPG versions of diagrams, look out for JPG (UK) or JPG (US) in the download dialogue box.

Download agreement


DOWNLOAD AGREEMENT

Light, Colour, Vision & How To See More (https://lightcolourvision.org) : Copyright © 2015-2022 : MediaStudies Trust.

Unless stated otherwise the author of all images and written content on lightcolourvision.org is Ric Mann.

ALL RIGHTS RESERVED

No part of this website may be copied, displayed, extracted, reproduced, utilised, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical or otherwise including but not limited to photocopying, recording, or scanning without the prior written permission of MediaStudies Trust.

EXCEPTIONS

Exceptions to the above statement are made for personal, educational and non-profit purposes:

Before downloading, cutting and pasting or reproducing any information, images or other assets found on lightcolourvision.org we ask you to agree to the following terms:

  1. All information, images and other assets displayed and made available for download on the lightcolourvision.org website are copyright. This means there are limitations on how they can be used.
  2. All information, images and other assets displayed or made available for download are solely and exclusively to be used for personal, educational and non-profit purposes.
  3. When you find the resources you need, then part of the download process involves you (the user) ticking a box to let us (at lightcolourvision.org) know we both agree on how the material can be used.
  4. Please contact [email protected] before considering any use not covered by the terms of the agreement above.

The copyright to all information, images and all other assets (unless otherwise stated) belongs to:

The Trustees. MediaStudies Trust
111 Lynbrooke Avenue
Blockhouse Bay
Auckland 0600
New Zealand
[email protected]

We love feedback

Your name and email address will be used solely to provide you with information you have specifically requested. See our privacy policy at https://lightcolourvision.org/privacy/.


We welcome your feedback 🙂









    Note: The feedback form records the URL of the current page


    Thank you so much for your time and effort