Ganglion cells
Retinal ganglion cells are located near the boundary between the retina and the central chamber containing vitreous humour. They collect and process all the visual information gathered directly or indirectly from the forty-something types of rod, cone, bipolar, horizontal and amacrine cells and, once finished, transmit it via their axons towards higher visual centres within the brain.
The axons of ganglion cells form into the fibres of the optic nerve that synapse at the other end on the lateral geniculate nucleus. Axons take the form of long slender fibre-like projections of the cell body and typically conduct electrical impulses, often called action potentials, away from a neuron.
A single ganglion cell communicates with as few as five photoreceptors in the fovea at the centre of the macula. This produces images containing the maximum possible resolution of detail. At the extreme periphery of the retina, a single ganglion cell receives information from many thousands of photoreceptors.
Around twenty distinguishable functional types of ganglion cells resolve the information received from 120 million rods and cones into one million parallel streams of information about the world surveyed by a human observer in real-time throughout every day of their lives. They function to complete the construction of the foundations of visual experience by the retina, ordering the eyes response to light into the fundamental building blocks of vision. Ganglion cells do the groundwork that enables retinal encodings to ultimately converge into a unified representation of the visual world.
Ganglion cells not only deal with colour information streaming in from rod and cone cells but also with the deductions, inferences, anticipatory functions and modifications suggested by bipolar, amacrine and horizontal cells. Their challenge, therefore, is to enable all this data to converge and to assemble it into high fidelity, redundancy-free, compressed and coded form that can continue to be handled within the available bandwidth and so the data-carrying capacity of the optic nerve.
It is not hard to imagine the kind of challenges they must deal with:
- Information must feed into and support the distinct attributes of visual perception and be available to be resolved within the composition of our immediately present visual impressions whenever needed.
- Information must correspond with the outstanding discriminatory capacities that enable the visual system to operate a palette that can include millions of perceivable variations in colour.
- Information about the outside world must be able to be automatically cross-referenced, highly detailed, specifically relevant, spatial and temporally sequenced and available on demand.
- Information must be subjectively orientated in a way that it is locked at an impeccable level of accurate detail to even our most insane intentions as we leap from rock to rock across a swollen river or dive from an aircraft wearing only a wingsuit and negotiate the topography of a mountainous landscape speeding past at 260km per hour.
It is now known that efficient transmission of colour information is achieved by a transformation of the initial three trivariant colour mechanisms of rods and cones into one achromatic and two chromatic channels. But another processing stage has now been recognised that dynamically readjusts the eye’s trivariant responses to meet criteria of efficient colour information management and to provide us with all the necessary contextualising details as we survey the world around us. Discussion of opponent-processing is dealt with in the next article!