A nuclear reaction involves changes within the nucleus of an atom, resulting in the release of energy and often the emission of particles, as well as electromagnetic radiation. This radiation can span various parts of the electromagnetic spectrum, with gamma rays being a particularly common form.
- Here’s a breakdown of how nuclear reactions can be sources of electromagnetic radiation:
- Nuclear Fission: When the nucleus of a heavy atom splits into smaller nuclei, it releases a significant amount of energy. A significant portion of this energy is emitted as gamma rays, which are high-energy photons within the electromagnetic spectrum. Nuclear power plants and atomic bombs harness fission reactions.
- Nuclear Fusion: When the nuclei of lighter atoms combine to form a heavier nucleus, it also releases energy. In stars like our Sun, nuclear fusion releases large amounts of energy, including a range of electromagnetic radiation from infrared light to ultraviolet light, and even gamma rays.
- Radioactive Decay: Unstable atomic nuclei undergo decay and change their composition to reach a more stable state. During this process, they can release charged particles (like alpha or beta particles), neutrinos, and often gamma rays.