CMY Subtractive Colour Model




To find out more about the diagram above . . . . read on!

CMY Subtractive Colour Model

Look carefully at the diagram at the top of the page. Now check out the following questions (and answers)!

  1. What are the three CMY primary colours?
  2. What is the difference between the CMY colour model and the four-colour CMYK inks used by printers?
  3. Why do digital printing inks (cyan, magenta and yellow) produce black when used together at full strength?
  4. Does a computer screen use the RGB or the CMY colour model?
  5. What is a subtractive colour model?

About the Diagram

Introducing the diagram! Read back and forward between the image at the top of the page and the explanation below!

This diagram introduces the CMY colour model. It shows the three primary colours (cyan, magenta and blue) with secondary colours between them.

The CMY colour model is a subtractive colour model that predicts the appearance of cyan, magenta and yellow inks when they are mixed together to produce other colours.

What you need to remember:

  • The CMY colour model is a method for mixing inks used by digital printers to produce other colours. It is called a subtractive colour model (a subtractive approach to colour).
  • The name of the CMY colour model comes from the initials of its three primary colours – cyan, magenta and yellow.
  • When pigments corresponding with the cyan, magenta and yellow primary colours are mixed together they combined to produce other colours.
  • Secondary colours are the colours produced when pairs of primary colours are combined in equal proportions. The CMY secondary colours are red, green and blue.
  • If inks corresponding with all three subtractive primary colours are mixed together in matching proportions the result is a dark brown or black.
  • If inks corresponding with all three subtractive primary colours are mixed in unequal proportions then many thousands (or possibly millions) of colours can be produced.
  • The CMY colour model does not define the precise colour of the cyan, magenta and yellow primaries.
  • When the exact composition of primary colours is defined, the colour model then becomes an absolute colour space.

What is a colour model?

A colour model is a way of:

  • Making sense of the colours we see around us in the world.
  • Understanding the relationship of colours to one another.
  • Understanding how to mix each type of coloured media to produce predictable results.
  • Specifying colours using names, codes, notation, equations etc.
  • Organising and using colours for different purposes.
  • Using colours in predictable and repeatable ways.
  • Working out systems and rules for mixing and using different types of colour.
  • Creating colour palettes, gamuts and colour guides.

Why use colour models?

  • Colour models help to relate colours to:
    • One another
    • Light sources, objects and materials
    • Experience and perception.
  • Colour models make sense of the fact that coloured lights, transparent inks and opaque paints (etc.) all produce different results when mixed.
  • Colour models help us manage the fact that colours mean and feel different and have different associations depending on context.
  • Colours models help us manage the fact that colours behave and appear differently:
    • When emitted by different types of light source.
    • When applied to, mixed with, or projected onto different materials.
    • When used for different purposes (fabrics, electrical wiring and components, print media, movies etc.)
    • When seen or used in different situations (indoors, in sunlight, in low light, on a digital display etc.)

Additive and subtractive colour

There are two principal types of colour model, additive and subtractive. Additive colour models are used when mixing light to produce colour. Subtractive colour models are used for printing with inks and dyes. The most common colour models used by graphic designers on a day to day basis are the RGB model on their computer displays and the CMYK model for digital printing.

Remember that:

  • Seeing colour results from how our eyes process light waves.
  • In the real world, colours are changing all the time, appear differently in different situations and are infinitely variable.
  • So colour models help to make sense of a chaotic world.

What colour models do?

A colour model helps to do any of the following:

  • Decide what colours to mix to get the colour you want.
  • Know what happens when you mix two or more colours together.
  • Provide a name or code for a colour or a series of colours you want to use again.
  • Give you a list of colours produced by a rainbow or by a digital display.
  • Provide a system to mix a palette of colours from red, green and blue (RGB) or from cyan, magenta and yellow (CMY).

Spectral colour model

The spectral colour model (red, orange, yellow, green, blue, violet) is associated with rainbows and the refraction and dispersion of wavelengths of light into bands of colour.

RGB colour model

RGB (red, green, blue) is an additive colour model based on the trichromatic theory of colour vision. It is widely used in video cameras, for producing colour on digital screens and with software such as Adobe Creative Cloud.

CMY(K) colour model

CMY (cyan, magenta, yellow) is a subtractive colour model. It is the standard colour model for digital printing. Printers often include a fourth component, black ink (K), to increase the density of darker colours and blacks.

The CMY colour model is also used with transparent dyes on fabrics.

RYB colour model

RYB (red, yellow, blue) is a subtractive colour model. It is the standard colour model used for artist paints and opaque pigments.

HSB colour model

HSB (hue, saturation, brightness) is a popular colour model because it is more intuitive and so easier to use when adjusting colour with digital software such as Adobe Creative Cloud.

HSB is one of a family that also includes HSV (hue, saturation, value) and HSI (hue, saturation, intensity).

Applications of colour models

Colour models have many applications including:

  • Understanding colour vision.
  • Mixing different coloured media eg. lights, paints, inks and dye.
  • Using colour with different equipment and technologies.
  • Storing and sharing colour information eg. notation systems and file types.
  • Describing and naming colours in a consistent way.
  • Nomenclature for describing similar things eg. systems for describing birds according to their colour.
  • Comparing colours eg. swatches and samples.

Colour models, colour spaces and colour systems

  • Colour models are device-dependent. This means that a colour specified as R=220, G=180, B=140 might appear differently on two digital monitors or when printed by different printers with the same specifications. In other words, the exact colour produced depends on the device that produces it not on the colour model itself.
  • A colour space describes the range of colours that an observer might see. Colour spaces can be very limited when a photo is printed on a low price digital printers, large when the same image is viewed on a high definition digital displays, or huge when the original scene is viewed in bright sunlight on a summer day.
  • A colour system considers all the factors that affect the observer, the colour model, how information is encoded before sending to the output device and the circumstances in which it is expected to be viewed.

Follow the blue links for definitions . . . . or check the summaries of key terms below!

Some Key Terms

Move to the next level! Check out the following terms.

Colour wheel

A colour wheel is a diagram based on a circle divided into segments. The minimum number of segments is three ...
Read More

Primary colour

Primary colours are a set of colours from which others can be produced by mixing (pigments, dyes etc.) or overlapping ...
Read More

Secondary colour

A secondary colour is a colour made by mixing two primary colours in a given colour space. The colour space may be produced by an additive colour model that ...
Read More

Subtractive colour

A subtractive colour model combines different hues of a colourant such as a pigment, paint, ink, dye or powder to ...
Read More

More Information



Some images on this website are available for download as either slides or diagrams.

Slides share common specifications:

  • Titles: Slides have titles.
  • Backgrounds: Black.
  • Size: 1686 x 1124 pixels (3:2 aspect ratio).
  • Slides are available in two file formats: JPG, AI (Adobe Illustrator).

Slides are optimized for viewing on-screen or with a projector.
Diagrams are optimized for printing on A4 pages in portrait format.



Some images on this website are available for download as either slides or diagrams.

Diagrams share common specifications:

  • Titles: No titles.
  • Backgrounds: White.
  • Size: 1686 pixels wide. So all diagrams reproduce at the same scale when inserted into Word documents etc.
  • Labels: Calibri 24pt Italic.
  • Diagrams are available in two file formats: JPG, AI (Adobe Illustrator).

Diagrams are optimized for printing on A4 pages in portrait format.
Slides are optimized for viewing on-screen or using a projector.


JPG file format

Download the image at the top of this page as a JPG file:

  • All JPG images available for download are 1686px wide.
  • Text on JPG images with white backgrounds is styled as Calibri 24pt Italic.
  • If the image you need is not exactly right, download it as an AI (Adobe Illustrator) file and edit it.
  • All the images on these Resource Pages were created in Adobe Illustrator and are vector drawings.

Did you know:

  • JPG stands for Joint Photographic Experts Group who created the standard.
  • The JPG file extension is used interchangeably with JPEG.
  • JPG files can be compressed for use on websites.
  • JPG files can be placed or pasted directly into MS Office documents.


AI (Adobe Illustrator) file format

Download the image at the top of this page as an AI (Adobe Illustrator) file:

  • All AI images available for download from are 1686px wide.
  • All the images on these Resource Pages were created in Adobe Illustrator and are vector drawings.
  • Vector drawing can be scaled up or down without any loss of quality.

Did you know:

  • AI  files downloaded from can be re-edited using Adobe Illustrator for your own personal use.
  • Adobe Illustrator can save or export AI files to other formats including PDF (.pdf), PNG (.png), JPG (.jpeg) and SVG(.svg) etc.


Download agreement

Download Agreement

Before downloading or cutting and pasting from we ask you to agree to the following terms:

  1. All information, images and other assets displayed or made available for download on the website are copyright. This means there are limitations on how they can be used.
  2. All information, images and other assets displayed or made available for download are solely and exclusively to be used for personal, educational and non-profit purposes.
  3. When you find the resources you need, then part of the download process involves you (the user) ticking a box to let us (at know we both agree how the material can be used.
  4. Please contact [email protected] before considering any use not covered by the terms of the agreement above.

If you are a student, educator or researcher you might also like to read our posts Copyright: Credit where credit’s due and Citation and bibliographies before copying and pasting material into essays, assignments or other academic work. They include advice on avoiding plagiarism and how to credit other people’s words, images and assets before submitting your work for marking or assessment. If you are confused, just ask a friendly teacher, librarian, or other member of academic staff.

Like to know more?

Please contact [email protected] if you have questions about any aspect of this project.