# RGB Colour Wheel with 30 Colours – Disc

\$0.00

This is one of a series of diagrams exploring RGB colour wheels. Colour wheels demonstrate or simulate the effect of colour mixing.

Colour wheels can be used to explore the effect of mixing any type of colour. Light, inks, dyes, artist’s paints, pigments and colourants all produce other colours when mixed together.

Whilst a colour model outlines a method for mixing and using different types of colour, a colour wheel explores what happens in practice.

SKU: N/A Category:

## Description

#### RGB Colour Wheel with 30 Colours

###### TRY SOME QUICK QUESTIONS AND ANSWERS TO GET STARTED
No! Not all RGB colour wheels show tertiary colours. So a wheel with 12 segments does but a wheel with 18 doesn't.
There are three secondary colours in an RGB colour wheel, one between each pair of primaries.
Yes! The primary colours red, green and blue are used to produce secondary colours when using the RGB and HSB colour models.
There are three primary colours in an RGB colour wheel.

This is one of a series of diagrams exploring RGB colour wheels. Colour wheels demonstrate or simulate the affect of colour mixing.

Colour wheels can be used to explore the effect of mixing any type of colour. Light, inks, dyes, artist’s paints, pigments and colourants all produce other colours when mixed together.

Whilst a colour model outlines a method for mixing and using different types of colour, a colour wheel explores what happens in practice.

Understanding the diagram

• A colour wheel fills the centre of the diagram and in this case has three segments showing the three RGB primary colours with nine intermediate colours between each one.
• The RGB codes corresponding with each colour appear to the left of the wheel and continue on the right.
• Notice how the colour notation works:
• Three numbers (separated by commas) show how much red, green and blue light is used to produce each colour.
• The minimum value for each light source is 0. In this case the light is fully off.
• The maximum value for each light source is 255. In this case the light source is fully on.
• As each number increases so does the intensity of the corresponding light but the wavelength and so the colour we see stays the same.
 RGB colour values Light source Red Green Blue Maximum value for each light source (fully on) 255 255 255 Values between 0 and 255 1 to 254 1 to 254 1 to 254 Minimum value for each light source (fully off) 0 0 0

RGB colour vales

What is an RGB colour wheel

• The purpose of an RGB colour wheel is to demonstrate or simulate the effect of projecting coloured lights, corresponding with the additive primaries (red, green and blue), onto a dark surface.
• In laboratory conditions, light sources are of equal intensity when fully on but can be turned down in 256 equal steps till fully off. The wavelengths of the light they output are set to values such as:
• Red = 625 nanometres
• Green = 500 nanometres
• Blue = 440 nanometres
• When coloured lights are projected and focused onto a surface they form overlapping circles. Colour wheels however are usually divided into segments like the spokes of a wheel on a bicycle.
• For everyday purposes, the most straight forward way to explore the RGB colour model is on a computer using software that allows different RGB colours to be selected.
• RGB colour wheels have a minimum of three segments. These are filled with the red, green and blue additive primary colours.
• When exploring RGB colour wheels the first thing to establish is what happens where pairs of primary colours of equal intensities overlap.
• Where red and green light sources overlap they produce yellow.
• Where green and blue light sources overlap they produce cyan.
• Where blue and a red light sources overlap they produce magenta.
• Yellow, cyan and magenta are called secondary colours and fill the segments between the primary colours on a colour wheel with six segments.
• Mixtures of equal intensities of pairs of secondary colours are called tertiary colours on a colour wheel with twelve segments.
• Additional colours are produced by continuing to overlap equal intensities of adjacent pairs of colours.
• The range of colours that can be produced on a computer screen by an RGB colour wheel is limited only by the system of notation, the resolution of the device they are displayed on and by the ability of an observer to distinguish between similar colours.

RGB colours are produced:

• On a computer or mobile phone screen by juxtaposing tiny dots of light corresponding with the three primary colours, red, green and blue.
• In computer software and apps by selecting RGB colours using swatches or by selecting RGB colour values (codes) using decimal or hexadecimal notation.

Look at a computer screen or TV using a magnifying glass to see the three RGB primary colours. Then step back to see how different colours appear when all the pixels merge together.

RGB and spectral colour

RGB colour values

RGB colour values are represented by decimal triplets (base 10) or hexadecimal triplets (base 16). These are used in software and apps to select a colour.

In decimal notation, an RGB triplet is used to represent the values of red, then green, then blue.

A range of decimal numbers from 0 to 255 can be selected for each value:

• Red = 255, 00, 00
• Yellow = 255, 255, 0
• Green = 00, 255, 00
• Cyan = 00, 255, 255
• Blue = 00, 00, 255
• Magenta = 255, 00, 255

In hexadecimal notation an RGB triplet is used to represent the value of red, then green, then blue. A range of hexadecimal numbers from 00 to FF can be selected for each value.

The hash symbol (#) is used to indicate hex notation:

• Red = #FF0000
• Yellow = #FFFF00
• Green = #00FF00
• Cyan = 00FFFF
• Blue = #0000FF
• Magenta = #FF00FF

The sequence of hexadecimal values between 1 and 16 = 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F.

The sequence of hexadecimal values between 17 and 32 = 10,11,12,13,14,15,16,17,18,19,1A,1B,1C,1D,1E and 1F.

• RGB colour is an additive colour model that combines wavelengths of light corresponding with the red, green and blue primary colours to produce other colours.
• RGB colour is called a model because it is a method that can be followed to produce any colour from a combination of red, green and blue light sources.
• Red, green and blue are called additive primary colours in an RGB colour model because they can be added together to produce other colours.
• When mixing light, each RGB primary colour is called a component of the resulting colour.
• Different colours are produced by varying the intensity of the component colours between fully off and fully on.
• When the light sources that produce the red, green and blue primary colours are at full intensity, together they produce white.
• Each light source at full intensity produces a fully saturated colour.
• When any two fully saturated RGB primaries are combined they produce a secondary colour (yellow, cyan or magenta).
• Some applications of the RGB colour model can produce over 16 million colours by varying the intensity of each of the three component primary colours.
• The additive RGB colour model cannot be used for mixing opaque pigments, paints or powders. To understand these colourants find out about subtractive colour models.
• The RGB colour model does not define precise wavelengths (or band of wavelengths) for the three primary colours.
• When the exact composition of primary colours are defined, the colour model then describes an absolute colour space.

#### RGB colour model

To be clear about the RGB colour model it is useful to remember first that: The visible spectrum is the ...

#### ROYGBV

ROYGBV is an acronym for the sequence of hues (colours) commonly described as making up a rainbow: red, orange, yellow, ...

#### Secondary colour

secondary colour is a colour made by mixing two primary colours in a given colour space. The colour space may be produced by an additive colour model that ...

#### Primary colour

Primary colours are a set of colours from which others can be produced by mixing (pigments, dyes etc.) or overlapping ...

• SLIDES are optimized for viewing on-screen.
• ILLUSTRATIONS are optimized for printing on A4 pages in portrait format.
###### SLIDES
• Slides are available in JPG and AI (Adobe Illustrator) file formats.
• Titles: Slides have titles.
• Backgrounds: Black.
• Size: 1686 x 1124 pixels (3:2 aspect ratio).
###### ILLUSTRATIONS
• Illustrations are available in JPG and AI two file formats.
• Titles: No titles.
• Backgrounds: White.
• Size: 1686 x 1124 (3:2 aspect ratio). So all illustrations reproduce at the same scale when inserted into Word documents etc.
• Labels: Calibri 24pt Italic.

#### File formats: JPG & AI

• JPG (JPEG) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
• If a JPG diagram doesn’t fit your needs, you can download it as an AI (Adobe Illustrator) file and edit it yourself.
• JPG files can be placed or pasted directly into MS Office documents.
• All AI (Adobe Illustrator) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
• All our diagrams are created in Adobe Illustrator as vector drawings.
• Save as or export AI files to other formats including PDF (.pdf), PNG (.png), JPG (.jpeg) and SVG(.svg) etc.

#### Spelling: UK & US

We use English (UK) spelling by default here at lightcolourvision.org.

###### COPY & PASTING TEXT
• After copy/pasting text please do a spell-check to change our spelling to match your own document.
• Download AI versions of diagrams to change the spelling or language used for titles, labels etc.
• We are adding American English (US) versions of diagrams on request. Just contact us and let us know what you need.

Light, Colour, Vision & How To See More (https://lightcolourvision.org) : Copyright © 2015-2022 : MediaStudies Trust.

Unless stated otherwise the author of all images and written content on lightcolourvision.org is Ric Mann.

No part of this website may be copied, displayed, extracted, reproduced, utilised, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical or otherwise including but not limited to photocopying, recording, or scanning without the prior written permission of MediaStudies Trust.

###### EXCEPTIONS

Exceptions to the above statement are made for personal, educational and non-profit purposes:

Before downloading, cutting and pasting or reproducing any information, images or other assets found on lightcolourvision.org we ask you to agree to the following terms:

1. All information, images and other assets displayed and made available for download on the lightcolourvision.org website are copyright. This means there are limitations on how they can be used.
2. All information, images and other assets displayed or made available for download are solely and exclusively to be used for personal, educational and non-profit purposes.
3. When you find the resources you need, then part of the download process involves you (the user) ticking a box to let us (at lightcolourvision.org) know we both agree on how the material can be used.
4. Please contact [email protected] before considering any use not covered by the terms of the agreement above.

The copyright to all information, images and all other assets (unless otherwise stated) belongs to:

The Trustees. MediaStudies Trust
111 Lynbrooke Avenue
Blockhouse Bay
Auckland 0600
New Zealand
[email protected]

#### We love feedback

Your name and email address will be used solely to provide you with information you have specifically requested. See our privacy policy at https://lightcolourvision.org/privacy/.

## We welcome your feedback 🙂

Note: The feedback form records the URL of the current page

Thank you so much for your time and effort