Red Light on a Dark Surface
$0.00
This is one of a set of 3 diagrams showing torches projecting red, green and blue light onto a neutral coloured surface.
A fourth diagram shows what happens when all three torches are turned on at the same time and their beams partially overlap one another.
Understanding the diagrams:
- The diagrams illustrate how the RGB colour model works in practice.
- Each torch emits light at the same intensity.
- Each torch points towards a different area of the surface.
- The light in each case is of a single wavelength so produces a spectral colour.
- The selected wavelengths are: red = 660 nanometres (nm), green = 525 nm, blue = 460 nm.
Description
Red Light on a Dark Surface
TRY SOME QUICK QUESTIONS AND ANSWERS TO GET STARTED
About the diagram
About the diagram
- This is one of a set of 3 diagrams showing torches projecting red, green and blue light onto a neutral coloured surface.
- A fourth diagram shows what happens when all three are on at the same time and their beams partially overlap one another.
Understanding the diagrams
- The diagrams illustrate how the RGB colour model works in practice.
- Each torch emits light at the same intensity.
- Each torch points towards a different area of the surface.
- The light in each case is of a single wavelength so produces a spectral colour.
- The selected wavelengths are: red = 660 nanometres (nm), green = 525 nm, blue = 460 nm.
About the RGB colour model
- RGB colour is an additive colour model that combines wavelengths of light corresponding with the red, green and blue primary colours to produce other colours.
- RGB colour is called a model because it is a method that can be followed to produce a full gamut of colours.
- Red, green and blue are called additive primary colours in an RGB colour model because they can be added together to produce all other colours.
- Each of the three beams is called a component of the resulting colour.
- Different colours are produced by varying the intensity of the component colours between fully off and fully on.
- When any two fully saturated additive primaries are combined they produce a secondary colour: yellow, cyan and magenta.
- When fully saturated red, green and blue primary colours are combined they produce white.
- Some RGB colour models can produce over 16 million colours by varying the proportion and intensity of each of the three component primary colours.
- The additive RGB colour model cannot be used for mixing different colours of pigments, paints, inks, dyes or powder. To understand these colourants find out about subtractive colour.
Some key terms
- To be clear about the RGB colour model it is useful to remember first that:
- The visible spectrum is the range of wavelengths of the electromagnetic spectrum that correspond with all the different colours we see in the world.
- A spectral colour is a colour corresponding with a single wavelength of visible light, or with a narrow band of adjacent wavelengths.
- The human eye, and so human perception, is tuned to the visible spectrum and so to spectral colours between red and violet. However, because of the way the eye works, we can see many other colours which are produced by mixing colours from different areas of the spectrum. A particularly useful range of colours is produced by mixing red, green and blue light.
- RGB colour is an entirely different approach to producing and managing colour.
- RGB colour is an additive colour model in which red, green and blue light is combined in various proportions to reproduce a wide range of other colours. The name of the model comes from the initials of the three additive primary colours, red, green, and blue.
- Except for the three primary colours, RGB colours are not spectral colours because they are produced by combining colours from different areas of the visible spectrum.
- RGB colour provides the basis for a wide range of technologies used to reproduce digital colour.
- RGB colour provides the basis for reproducing colour in ways that are well aligned with human perception.
- When an observer has separate controls allowing them to adjust the intensity of overlapping red, green and blue coloured lights they are able to create a match for a very extensive range of colours.
- When looking at any modern display device such as a computer screen, mobile phone or projector we are looking at RGB colour.
- Magenta is an RGB colour for which there is no equivalent spectral colour.
Wavelength is a measurement from any point on the path of a wave to the same point on its next oscillation. The measurement is made parallel to the centre-line of the wave.
- The wavelength of an electromagnetic wave is measured in metres.
- Each type of electromagnetic radiation, such as radio waves, visible light and gamma waves, forms a band of wavelengths on the electromagnetic spectrum.
- The visible part of the electromagnetic spectrum is composed of the range of wavelengths that correspond with all the different colours we see in the world.
- Human beings don’t see wavelengths of visible light, but they do see the spectral colours that correspond with each wavelength and the other colours produced when different wavelengths are combined.
- The wavelength of visible light is measured in nanometres. There are 1,000,000,000 nanometres to a metre.
ROYGBV is an acronym for the sequence of hues (colours) commonly described as making up a rainbow: red, orange, yellow, green, blue, and violet.
- A rainbow spans the continuous range of spectral colours that make up the visible spectrum.
- The human eye is tuned to the visible spectrum and so to spectral colours between red and violet.
- ROYGBV are colours associated with a range of wavelengths rather than with unique values.
- The visible spectrum is the small band of wavelengths within the electromagnetic spectrum that corresponds with all the different colours we see in the world.
- The fact that we see the distinct bands of colour in a rainbow is an artefact of human colour vision.
The trichromatic colour model is a theory of colour that establishes terms, rules and methods to enable human colour vision to be dealt with in both systematic and practical ways.
Diagrams are free to download
Downloads: Slides or Illustrations
DOWNLOAD DIAGRAMS
- SLIDES are optimized for viewing on-screen.
- ILLUSTRATIONS are optimized for printing on A4 pages in portrait format.
SLIDES
- Slides are available in JPG and AI (Adobe Illustrator) file formats.
- Titles: Slides have titles.
- Backgrounds: Black.
- Size: 1686 x 1124 pixels (3:2 aspect ratio).
ILLUSTRATIONS
- Illustrations are available in JPG and AI two file formats.
- Titles: No titles.
- Backgrounds: White.
- Size: 1686 x 1124 (3:2 aspect ratio). So all illustrations reproduce at the same scale when inserted into Word documents etc.
- Labels: Calibri 24pt Italic.
File formats: JPG & AI
DOWNLOAD THE DIAGRAM ON THIS PAGE AS A JPG FILE
- JPG (JPEG) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
- If a JPG diagram doesn’t fit your needs, you can download it as an AI (Adobe Illustrator) file and edit it yourself.
- JPG files can be placed or pasted directly into MS Office documents.
DOWNLOAD THE DIAGRAM ON THIS PAGE AS AN AI file
- All AI (Adobe Illustrator) diagrams are 1686 x 1124 pixels (3:2 aspect ratio).
- All our diagrams are created in Adobe Illustrator as vector drawings.
- Save as or export AI files to other formats including PDF (.pdf), PNG (.png), JPG (.jpeg) and SVG(.svg) etc.
Spelling: UK & US
We use English (UK) spelling by default here at lightcolourvision.org.
COPY & PASTING TEXT
- After copy/pasting text please do a spell-check to change our spelling to match your own document.
DOWNLOAD DIAGRAMS
- Download AI versions of diagrams to change the spelling or language used for titles, labels etc.
- We are adding American English (US) versions of diagrams on request. Just contact us and let us know what you need.
- When downloading JPG versions of diagrams, look out for JPG (UK) or JPG (US) in the download dialogue box.
Download agreement
DOWNLOAD AGREEMENT
Light, Colour, Vision & How To See More (https://lightcolourvision.org) : Copyright © 2015-2022 : MediaStudies Trust.
Unless stated otherwise the author of all images and written content on lightcolourvision.org is Ric Mann.
ALL RIGHTS RESERVED
No part of this website may be copied, displayed, extracted, reproduced, utilised, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical or otherwise including but not limited to photocopying, recording, or scanning without the prior written permission of MediaStudies Trust.
EXCEPTIONS
Exceptions to the above statement are made for personal, educational and non-profit purposes:
Before downloading, cutting and pasting or reproducing any information, images or other assets found on lightcolourvision.org we ask you to agree to the following terms:
- All information, images and other assets displayed and made available for download on the lightcolourvision.org website are copyright. This means there are limitations on how they can be used.
- All information, images and other assets displayed or made available for download are solely and exclusively to be used for personal, educational and non-profit purposes.
- When you find the resources you need, then part of the download process involves you (the user) ticking a box to let us (at lightcolourvision.org) know we both agree on how the material can be used.
- Please contact [email protected] before considering any use not covered by the terms of the agreement above.
The copyright to all information, images and all other assets (unless otherwise stated) belongs to:
The Trustees. MediaStudies Trust
111 Lynbrooke Avenue
Blockhouse Bay
Auckland 0600
New Zealand
[email protected]
We love feedback
Your name and email address will be used solely to provide you with information you have specifically requested. See our privacy policy at https://lightcolourvision.org/privacy/.
We welcome your feedback 🙂